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Chapter 1
Curves

Our starting point is curves in R2 and R3, described in the language of vectors.

1.1 Parametrized curves

Definition. A parametrized curve in Rn is a vector-valued function

= (1.1)

where each component γi(t) is a real function, and (some subset of R).

We always take I to be an open set (this will be justified later). I will use a bold γ

to denote a curve (vector). We will also assume that all curves in this course can be

differentiated infinitely many times on I, in other words, each γi is a function on I.

It gets tiring to say “γ is infinitely differentiable”, so instead, we say “γ is ”.

Normally, smooth means C1, but only in this course do we take this word to mean C∞.

Even if a function looks a bit suspicious, e.g. γ(t) =
(
ln(t),

√
t
)
, we will work with

the interval of I for which γ is smooth (in this case, I = ).

Example 1. Write down the parametric equation of a line-segment joining two points

with position vectors a and b.

Example 2. (a) Find a vector parametrization of the curve y = x2.

(b) Is γ = (t2, t4), t ∈ R, a good parametrization?
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4 CHAPTER 1. CURVES

Example 3. Write down a vector parametrization of

a) the unit circle, b) the upper unit semi-circle.

Example 4. Sketch the curve (in R3): γ(t) = (cos t, sin t, t), t ∈ (0, 4π).

Example 5. Find the Cartesian equation γ(t) = (et + 1, t2), t ∈ R. Sketch the curve.

Next we have a familiar result from Vector Calculus (consult your old notes).

Proposition 1.1. The tangent vector to the curve γ(t) is .

Example 6. Find the tangent vector to the curve in Example 5 at t = 0.

Example 7. A curve γ(t) has a constant tangent vector for all t. What curve is this?

(PS. vector functions can be integrated and differentiated as usual – component-wise.)
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Parametric curves can often intersect itself. This means that a single point on the

curve can be specified by more than one value of t.

Example 8. Find the values of t for which the following curve1 passes through the

origin.

γ(t) =

(
(1 + 2 cos t) cos t

(1 + 2 cos t) sin t

)
, t ∈ (0, 2π).

Find the tangent vectors at those values of t.

1This is the Limaçon of Pascal. It is the locus traced out by a point on a circle rolling on another
circle. See some nice graphics here: http://bit.ly/1MZqifR
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1.2 Arc-length parametrization

Proposition 1.2. The arc-length of the curve γ(t) between t = t0 and t = t1 is given by

= (1.2)

See the Vector Calculus for proof, but we can roughly see why this is true as follows:

Definition. The arc-length function is defined as

= for some constant t0. (1.3)

Important: (1.2) is a number, but (1.3) is a function.

If we think about γ(t) physically as the trajectory (displacement) of a particle.

Then the vector γ̇(t) is just its , and the magnitude |γ̇(t)| is its

. The vector γ̈(t) is its .

Definition. The scalar function |γ̇(t)| is called the speed of the curve γ(t).

Example 9. (a) Calculate the length of the helix which winds round a cylinder of

unit radius once.

(b) Obtain the arc-length function, s(t), with t = 0 at the starting point.

(c) Write down the parametrization of the helix using s instead of t. Find the speed of

the curve in this parametrization.
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Definition. The arc-length parametrization of γ(t) is denoted γ̃(s), where s is the

(with some initial parameter value t0).

Lemma 1.3. Let γ̃(s) be the arc-length parametrization of a curve γ(t). Suppose that

|γ̇(t)| 6= 0, then γ̃(s) has unit speed.

Proof :

(We’ll deal with the converse later.) It’s important to keep in mind that both γ(t) and

γ̃(s) describe the same curve - just parametrized differently. Where there is no confusion,

we can write γ(s) instead of γ̃(s).

Example 10. Find the arc-length parametrization of the semicircle radius R > 0:

{(x, y) : x2 + y2 = R2, y > 0}.

Example 11. Find the arc-length parametrization of the curve:

γ(t) = (t, t2, t3), t > 0.
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The moral of the story: it’s often not possible to find the arc-length parametrization

explicitly.

But then, why do we bother with arc-length parametrization if it’s so hard to calculate?

Later on, we will see that it simplifies many otherwise nasty formulae and proofs. Most

of the time we won’t need to know the explicit form of the arc-length parametrization,

s(t), but just the fact that it exists is enough.

1.3 Reparametrization

Let’s generalise the idea of using a different parameter to describe the curve γ(t) as γ̃(s),

where s is not necessarily the arc-length parameter.

Definition. A function φ : A→ B is said to be a if:

• φ is smooth

• φ is invertible

• φ−1 is also smooth

If such a φ exists, the two sets A and B are said to be .

Definition. A curve γ̃(s) is said to be a of γ(t) if there is

diffeomorphism φ such that φ : S → T (S and T are some subsets of R) with

= (1.4)

Important: The two curves are exactly the

same (same image, same geometry) – only

the points on it are described differently. The

mapping on the right explains this situa-

tion. This kind of diagram will be very useful

throughout the course.

Not any random parametrization is a reparametrization: we must check that φ is

indeed a diffeomorphism.
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Example 12. Show that γ̃(s) =
(
R sin s, R cos s

)
is a reparametrization of the semicircle

γ(t) =
(
R cos t, R sin t

)
in Example 10. Identify the diffeomorphism φ in this case.

Important: The function t = φ(s) can also be written (in short) as .

(Analogy: y = f(x) can be written as y(x) on a lazy day.)

Similarly, s = φ−1(t) can be written as .

Similarly for derivatives: we can either deal with φ̇(s) = dφ/ds or .

(Analogy: f ′(x) , df/dx and dy/dx all refer to the same thing). Be flexible.

Lemma 1.4. Let φ be a smooth bijection. Then the derivatives of φ and φ−1 are nonzero.

Proof :

Definitions. The curve γ(t) is said to be a regular curve if

Question. Find a regular and a non-regular parametrization for the line y = x.

This means that “regularity” is a property of parametrizations - and not the geometry

of a curve. You can’t tell whether a curve is regular by just looking at its shape.

Lemma 1.5. A reparametrization of a regular curve is again regular.

Proof :
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The next theorem requires a little result from Analysis.

Lemma 1.6. Let f be a strictly increasing, smooth function in [a, b], then f−1 exists, is

smooth, and increasing on [f(a), f(b)].

See any textbook on real analysis for a simple proof. Actually, only the fact that

f ′ 6= 0 is enough for f to be invertible – this is the inverse function theorem. More about

this later, but it’s worth looking it up if you haven’t heard of it before.

Lemma 1.7. Let γ(t) be the parametrization of a regular curve. Then, its arc-length

function, s(t), is a strictly increasing, smooth function.

Proof :

Theorem 1.8. A curve has a unit-speed reparametrization iff it is regular.

Proof : We will prove the ‘if ’ part. The ‘only if ’ part is easier (homework).
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The big conclusion which we’ve just shown is: a unit-speed reparametrization exists

for all regular curves. But is it unique?

Corollary. Let γ(u) and γ̃(s) be two unit-speed reparametrizations of a curve, then

u = ±s+ C, (1.5)

where C is a constant.

Proof :

The previous Corollary implies that all unit-speed parametrizations are effectively

the arc-length parametrization, but possibly with

(a) a shift in the parameter values. (b) increasing or decreasing parameters.

(or a combination of both. More about (b) in sheet 1, Q4). Let’s think about this

pictorially. Suppose we have a curve of length 10 units, what are some possible unit-speed

parametrizations?

Whatever unit-speed parametrization you choose, it’s always describing the same

curve with length 10 units.

So from now on, we can use the terms “arc-length parametrization” and “unit-speed

parametrization” interchangeably, keeping in mind these degrees of freedom.

In the next Chapter, we look at further properties of curves, including the concept of

the Frenet Frame. I recommend revisiting Chapter 1 of your Vector Calculus notes.
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Example 13. (a) Find an open interval I on which the curve

γ(t) = (cos2 t, sin2 t), t ∈ I,

is a regular curve.

(b) Find a unit-speed parametrization of the curve.

(c) Sketch the curve.



Chapter 2
Curvature and Torsion

In this Chapter, we will focus on two important characteristics of curves in R3: the

curvature, which quantifies how much a curve curves, and the torsion, which measures

the deviation of a curve from a 2D plane.

2.1 Curvature

So how much does a curve curve? A huge circle seems to curve than a little

circle (the outer lane of a big running track is mostly straight). We want to come up

with a quantity which measures this curvature: let’s call it κ. If R is the radius of a

circle, then already we should expect

∝ (2.1)

Definition. Let γ(s) be a unit-speed curve. The curvature is defined as the function

=

Important: The curvature is a function (scalar) – not a vector. Also, this definition

only works for unit-speed parametrizations - we will deal with the general case later.

Now let’s see if this definition of curvature is consistent with what we expect.

13
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Example 1. Calculate the curvature of a circle centred at the origin with radius R.

Example 2. Prove that two unit-speed parametrizations of a curve have the same

curvature.

This isn’t surprising: the geometry of a curve is unchanged by reparametrizations.

Before we proceed, here are some useful results from vector calculus.

Warning: These won’t be given in the exam.

(a) a · b =

(b) |a× b| =

(c) a · b× c =

(d) a · a× c =

(e) a× (b× c) =

(f) |a× (a× b)| =

(g)
d

dt
(a · b) =

(h)
d

dt
(a× b) =
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Lemma 2.1. If |γ̇| =constant, prove that γ̇ and γ̈ are orthogonal.

Lemma 2.1 looks very simple, but it will be very useful for the rest of this Chapter.

Theorem 2.2. The curvature of a regular curve, γ(t), is given by

κ(t) =
|γ ′ × γ ′′|
|γ ′|3

,

where a dash indicates a derivative wrt t.
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Example 3. What curve is this?

γ(t) = (a cos t, a sin t, bt), t ∈ R. (2.2)

Calculate its curvature. Discuss the cases when i) a = 0 (b 6= 0), ii) b = 0 (a 6= 0).
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2.2 Curvature in 2D

In this section, let’s assume that the curves are 2 dimensional, i.e. γ(t) = (γ1(t), γ2(t)).

Whilst κ ≥ 0, in 2D we should be able to say more about the sign of the curvature (e.g.

y = x2 VS y = −x2).

Definition. The unit tangent to the curve γ(t) is defined as the vector

t =

If γ(s) is a unit-speed curve, then clearly t = .

When we discuss curves with parameter s or t, it helps to distinguish between the

two derivatives. From now on, I will use a dash for t and a dot for s derivative.

Definition. The signed unit normal, ns, is defined as the vector obtained by rotating

the unit tangent by 90◦ anticlockwise, i.e. if t = (t1, t2), then

ns =

Note that t · ns = .

Question. Why does Lemma 2.1 imply that γ̈ and ns are multiple of each other?

Definition. Let γ(s) be a unit-speed curve. The signed curvature is the scalar κs such

that

γ̈ = κsns. (2.3)

The curvature κ is always non-negative, but κs can change sign. For curves in R2,

both quantities exist, but for curves in R3 we cannot talk about κs (why?).
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Example 4. Show that for a unit-speed curve in R2, γ(s), we have κ = |κs|.

Now we will argue that the concept of positive/negative curvature in the plane

coincides with the ‘concave up/down’ concept from school maths.

Study the diagram of a plane curve γ(s) below. Assume that the curve is swept out

from left to right as s increases from 0. Mark in the directions of the unit tangents,

signed normals, and γ̈ at the marked points.

Note: It might help to think of the derivative of a vector as the change in the vector as

it moves to a nearby point.

You can now see that the point where κs > 0 (i.e. where ns and γ̈ point in the

same direction) is concave up (also called positive concavity), and similar for negative

curvature/concavity. At κs = 0 we have a point of , around which t is

roughly constant. So the signed curvature is simply the generalisation of concavity.

The next Example shows what happens to Eq. 2.3 when γ is not unit speed.
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Example 5. Let γ(t) be a regular curve and let γ(s) be its unit-speed parametrization.

Let s′ denote ds/ dt. Deduce that γ ′ = s′γ̇, and find a similar expression for γ ′′.

Next, let’s study an alternative interpretation of the signed curvature as the rate of

rotation of the tangent vector t.

Definition. Let γ(s) be a unit-speed curve in 2D. The turning angle, ϕ, is the angle

that the tangent vector makes relative to the x axis, i.e.

t = γ̇(s) = (2.4)

Example 6. Roughly sketch the graph of ϕ(s) for the curve segment on the previous

page. Is this graph unique?

We can regard ϕ as a reparametrization s→ ϕ(s). One can actually show that the

turning-angle function, ϕ(s), such as the one you sketched, exists for any unit-speed

parametrized curve. Furthermore, ϕ(s) will be smooth and unique (up multiples of 2π).1

1For an easy proof, see Bär, p. 37.
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Lemma 2.3. Let γ(s) be a unit-speed curve in 2D with turning angle ϕ(s). Then,

κs =
dϕ

ds
. (2.5)

Example 7. Find the arc-length function s(t) for the curve γ(t) = (t, cosh t) (t > 0).

Hence, use (2.5) to calculate κs(s) and κs(t).

(See problem sheet 2 for yet another way to do calculate κs.)

Before we move on to curvature in R3, we should mention a very special theorem: It

turns out that the signed curvature completely characterises plane curves (up to rotation

and translation). See Pressley for proof.

Theorem 2.4. [Fundamental Theorem of Plane Curves] Let κs: I → R be any given

smooth function (I ⊆ R).

[Existence] There exists a unit-speed curve γ : I → R2 whose signed curvature is κs.

[Uniqueness] If γ̃ is another unit-speed curve with signed curvature κs, then γ and γ̃ are related

by a sequence of rotations and translations in R2.
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2.3 Curvature in R3

We’ve just shown that in R2, the signed curvature κs essentially determines the shape

of the curve. In R3, however, the curvature κ = alone is not enough to

completely characterise a curve. Another property is required to quantify how much a

curve is ‘lifted’ out of the plane: this is the torsion, as we will see shortly.

Definition. Let γ(s) be a unit-speed curve in R3, we define the principal normal as the

unit vector n such that

γ̈ = κn. (2.6)

Compare this with Eq. 2.3 for curves in R2.

We can assume that κ 6≡ 0 (otherwise, see Sheet 2 Q1).

Question. Can you see why n is indeed a unit vector?

As before, we will use the notation t = for the unit tangent. This means that

(2.6) can also be written as

= (2.7)

Example 8. Prove that n is perpendicular to t.

Definition. The binormal of a unit-speed curve is defined as the vector

b = t× n. (2.8)

Clearly b is perpendicular to both t and n, so {t,n,b} forms an .

Example 9. Find |b| and n× b.

Thus we can perform calculations with {t,n,b} in the same way as we do with {i, j,k}.

Definition. The basis {t,n,b} is called the Frenet2 frame for space curves.

Question. What is the equivalent of the {t,n,b} frame for plane curves?

2Jean Frédéric Frenet (1816-1900), French mathematician. Sometimes also attributed to Joseph
Serret (1819-1885), another French mathematician who independently studied space curves in this
formulation.
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Example 10. Prove that ḃ is perpendicular to both b and t.

This Example showed that ḃ is parallel to . Let −τ be the proportionality ‘constant’:

ḃ = −τn. (2.9)

(the minus sign is just a convention). Let’s think about what τ means. If τ = 0, then b

is a constant vector. This means that the curve stays in the spanned by t

and n. We will prove this properly later, but that’s the idea.

Definition. The torsion of a unit-speed curve with nonzero curvature is τ defined in

Eq. 2.9.

Example 11. Prove that two unit-speed parametrizations of a curve γ(t) have the same

curvature and torsion.

Solution: Let γ(s) and γ(u) be two unit-speed parametrizations of γ(t). Let {t,n,b}
be the basis calculated wrt to s, and {t̃, ñ, b̃} that wrt to u. From Chapter 1, we know

that u and s are related by . It’s sufficient to consider the case when

u = −s (the 2 curves have opposite orientations).
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Recall that every regular curve has a unit-speed reparametrization. This means that

we can associate κ and τ to every regular curve. Thus, we have deduced the following:

Corollary. The curvature κ and torsion τ of a regular curve are both unchanged by

reparametrizations.

In other words, κ and τ are fundamental attributes of a regular curve, independent of

its parametrization. How does τ look like for curves that are not necessarily unit speed?

In problem sheet 2, you’ll show that:

Theorem 2.5. Let γ(t) be a regular 3D curve on which κ 6= 0. The torsion is given by

τ =
γ ′ × γ ′′ · γ ′′′

|γ ′ × γ ′′|2
(2.10)

We now show that τ quantifies how much a curve escapes from a 2D plane.

Theorem 2.6. Let γ be a regular 3D curve on which κ 6= 0. The curve is contained in

a plane iff τ = 0 on the entire curve.

Proof. WLOG, let us work with a unit-speed parametrization γ(s) of the curve.
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Theorem 2.7. [Frenet-Serret equations ] Let γ be a 3D unit-speed curve on which κ 6= 0.

We have the relations  ṫ

ṅ

ḃ

 =

 0 κ 0

−κ 0 τ

0 −τ 0


t

n

b

 (2.11)

Proof. Eqs. 2.7 and 2.9 provide the first and third lines. To prove the second line,

differentiate the cyclic relation, n = b× t.

Example 12. For the helix γ(t) = (cos t, sin t, t) (t > 0), find the Frenet basis {t,n,b},
as well as its curvature and torsion. Work with a unit-speed parametrization.
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Example 13. Let γ(s) be a unit-speed curve. Express
...
γ in the Frenet basis. Hence

show that

γ̇ · γ̈ ×
...
γ = κ2τ.

Example 14. Let γ(s) be a unit-speed curve with constant curvature κ > 0 and τ = 0.

(a) Show that γ + κ−1n is a constant vector.

(b) Hence prove that γ is part of a circle. Find the radius of the circle.
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This is why the quantity 1/κ is called the radius of curvature (regardless of whether

γ is a circle or not). It locally quantifies the amount that the curve curves, by comparing

it with a ‘best-approximating’ circle (in 2D) or sphere (in 3D). These are called the

osculating circle or sphere of γ.

A couple of concluding remarks to close this Chapter.

• The fact that an anti-symmetric matrix appears in the Frenet-Serret equations is

not a coincidence. The reason is found in the fields of Lie group and Lie algebra. . .

• In 2D, the signed curvature κs specifies curves up to translation and rotation. We

have a similar situation in 3D:

Theorem 2.8. [Fundamental Theorem of Space Curves] Let κ : I → R+ and

τ : I → R be smooth functions (I ⊆ R).

[Existence] There exists a unit-speed curve γ : I → R3 with curvature κ and torsion τ .

[Uniqueness] If γ̃ is another unit-speed curve with curvature κ and torsion τ , then γ and γ̃

are related by a sequence of rotation and translations in R3.

• Calculating κ and τ for a given curve γ can be a messy business without a plan.

Here’s a helpful flowchart.



Chapter 3
Global properties of plane curves

We now study global properties of curves in R2, meaning that we are no longer interested

in their local properties like κ or τ at a certain point, but rather their macroscopic

properties, i.e. properties of the curve as a whole. For example, we will prove that the

area enclosed by a closed curve of a given length is maximised iff it is a circle.

We will only deal with closed curves in R2 in this Chapter.

We are going to study 3 big theorems connected with closed curves, namely, 1) Hopf’s

Umlaufsatz, 2) The Isoperimetric Inequality, and 3) The Four-Vertex Theorem.

Definition. A curve γ : R → R2 is said to be if there exists a finite

constant L > 0 such that, for all t ∈ R,

γ(t+ L) = γ(t) (3.1)

The smallest such L is its . We can also say that the curve is .

Definition. A smooth curve γ : R → R2 is said to be if it is regular and

periodic.

Example 1. Show that γ(t) = (cos t, sin t), where t ∈ R, is a closed curve.

27
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The definition of a closed curve is not as straightforward as you might first think.

Can you tell whether this curve is closed?

γ(t) = (cos t, cos2 t), t ∈ R.

Here’s another example. This curve looks ‘closed’ but it is not classified as such.

Since a closed curve is regular, we can work with its arc-length parametrization,

which can be shown to be periodic, and the period equals its . Though

this sounds completely obvious, the proof is slightly technical though not difficult (see

Pressley page 21). We will state it here as a lemma.

Lemma 3.1. If γ : R → R2 is a closed curve with length `, then its arc-length

parametrization, γ̃(s), is also a closed curve with period L, where

=

Definition. A closed curve γ : R→ R2 is if it has no self-intersection.

Equivalently, a curve γ is simple if and only if the function γ is .

Question. Sketch a closed curve which is simple and one which is not simple.



3.1. HOPF’S UMLAUFSATZ 29

3.1 Hopf’s Umlaufsatz

This section concerns the ‘total’ signed curvature as you go round a closed curve, i.e.

(3.2)

(we can just work with the arc-length parametrization). Why is this interesting? Well,

note that for unit-speed curves, we can write the signed curvature as the derivative of

the turning angle (Lemma 2.3), so that

(3.3)

where L is the length of the closed curve. So this integral actually measures the total

turning angle which the tangent sweeps out as the curves comes back onto itself.

In the case of the circle, you might be able to guess the answer.

Example 2. Calculate
∮
κs ds for γ(t) = (R cos t, R sin t), where t ∈ R.

Can you think of a closed curve which winds around more than once before closing

up? In this case, you can imagine that
∮
κs ds > 2π.
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Lemma 3.2. Let γ be a unit-speed closed curve, then the total signed curvature is a

multiple of , i.e. ∮
κs ds = for some N ∈ Z

Proof. Again let’s work with the turning angle and arc-length parametrized γ. Let L be

the period. As before, this means:∮
κs ds = (3.4)

and we want to show that this is a multiple of 2π.

Since γ(s) is unit speed, its period is equal to the arc-length L (by Lemma 3.1).

This means that γ(s + L) = for all s. Clearly, the unit tangent, t, is also

L-periodic, and, in particular, t(s = 0) = t(s = L) (otherwise γ would not be smooth).

In terms of the turning angle, t(s) = (cosϕ(s), sinϕ(s)), so

This implies that ϕ(L)− ϕ(0) is a multiple of 2π.

Definition. The integer N in Lemma 3.2 is called the of γ.

Intuitively, N is the number of times the curve goes around itself before closing up.

Example 3. Draw closed curves with rotation index N = 0,±1,±2, 3.
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You might have noticed that other than the cases N = ±1, the curves have self-

intersections, i.e. they are not simple. This key observation is precisely. . .

Theorem 3.3. [Hopf’s Umlaufsatz ] The rotation index of a simple closed curve in R2 is

either , i.e. ∮
κs ds = ±2π.

In German, Umlauf means rotation or circulation, and Satz means theorem. It is

named after the German mathematician Heinz Hopf (1894-1971).

The proof is rather long and technical and we won’t go into it in this course1, however,

you are expected to be able to state what the theorem says. You should have an intuitive

feel of what it means.

Question. How can you tell whether a curve has rotation index 1 or −1?

Definition. A simple closed curve is said to be if it has

rotation index . Otherwise it is negatively oriented.

Example 4. Let γ(t) be a circle radius 2 centred at the origin. Find

∮
κs(t) dt.

Comment on the answer in light of the Umlaufsatz.

1See Bär, page 41.
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Example 5. By applying Hopf’s Umlaufsatz to the curve γ(t) = (p cos t, q sin t), (where

p > 0 and q > 0), evaluate the integral∫ 2π

0

dt

p2 sin2 t+ q2 cos2 t
.
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3.2 Isoperimetric Inequality

What is the maximum area that can be formed with a given length of rope?

This is the famous isoperimetric problem. Our intuition suggests that the solution

is a circle, but proving it is surprisingly difficult. The earliest attempt was probably

by Zenodoros (200BC2) but a rigorous proof was not established until the 19th century.

Here we study an interesting proof based on differential geometry.

Phrasing the problem in terms of calculus, we are interested in the area inside a

simple closed curve γ. We denote this area by the double integral

A = (3.5)

where Ω is the finite area bounded by γ.

Here are a few results we will need for the proof. Remember this from Vector Calculus?

Theorem 3.4. [ Theorem] Let Ω be the region in the plane bounded by a

simple closed curve γ, which is positively oriented. Let P (x, y) and Q(x, y) be functions

with continuous 1st-order partial derivatives in Ω, then∫∫
Ω

(Qx − Py) dx dy =

Example 6. Show that the area bounded by the closed curve γ(s) = (x(s), y(s)),

s ∈ (a, b) (where γ(s) is not necessarily unit-speed) can be written as

A =

∫ b

a

xẏ ds,

Write down two other expressions for the area.

2For an interesting historical account of the isoperimetric and other optimization problems, I
recommend The Parsimonious Universe by Hildebrant and Tromba, as well as this video lecture by
John Barrow: http://bit.ly/1Jwrz7g



34 CHAPTER 3. GLOBAL PROPERTIES OF PLANE CURVES

Lemma 3.5. |x · y| ≤ |x||y|. Equality holds iff

Lemma 3.6. For all A,B,C,D ∈ R,

(AB − CD)2 ≤ (A2 + C2)(B2 +D2),

where the equality holds iff AD +BC = 0.

Lemma 3.7. [“GM ≤ AM”] For all A,B ≥ 0, we have

√
AB ≤ A+B

2
.

When does equality hold?

Theorem 3.8. [Isoperimetric Inequality ] Let γ be a simple closed curve with length L,

enclosed area A. Then

A ≤ L2

4π
,

and equality holds iff γ is a circle.
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Proof. This proof is due to the German mathematician Erhard Schmidt (1876-1959).

Parametrize the given curve by arc-length:

γ(s) =

Place the origin at the centre of a circle C (which does

not intersect γ) with diameter equal to the distance

between the two vertical lines which meet and bound

γ at s = 0 and s = s1. Also assume that C and γ

are both positively oriented.

Let the equation of the circle be

C(s) = .

Note that there is no guarantee that the circle is

unit-speed in this parametrization.

Also, we are free to choose .

Get a feel for this statement by tracing out the two

curves on the left simultaneously with two fingers.

Using Green’s Theorem (see Example 6), the area enclosed by γ (length L) is

A =

Similarly, the area enclosed by the circle (say, radius r),

πr2 =

Adding the two areas gives:

A+ πr2 =

♥ ≤

♦ ≤
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Now apply the “GM≤ AM” inequality to the areas of γ and the circle.

This proves the Isoperimetric Inequality. It remains to show that equality holds iff γ

is a circle. The “if” part is immediate. Let’s suppose A = L2/4π. We want to show that

(x(s), y(s)) describes a circle.

Firstly, note that the “GM≤AM” becomes an equality iff :

The inequality ♦ (see Lemma 3.6) becomes an equality iff

But we also know that x2 + ȳ2 = r2. Differentiating wrt s gives:

Since C = (x̄, ȳ) describes a circle, γ is also a circle (translated along the y direction).

Finally, it remains to show that if ♦ is an equality, then ♥ is also an equality.

In summary, the Isoperimetric Equality holds iff γ is circle.
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3.3 The Four-Vertex Theorem

Definition. A vertex of a plane curve γ(t) (not necessarily unit speed) is defined to be

a point where the signed curvature attains a stationary point, i.e.

=

So a vertex is where the curve bends ‘most’ or ‘least’ locally. A circle has constant

curvature, so every point on the circle can be regarded as a vertex. But think about an

ellipse. How many vertices does it have?

Example 7. How many vertices do these figures have? Plot κs(s) in each case.

x

The last Example shows a closed curve with vertices. The curve is clearly

not simple. Can you think of a simple closed curve with fewer than 4 vertices? The

Four-Vertex Theorem, which we will prove, says that there is no such curve!

The Theorem actually concerns any simple closed curve, but in this course we will

only prove a less general, though still useful, result for a subset of simple closed curves.

Definition. A closed curve γ is said to be if the line segment joining

any two points on γ lies entirely in the interior3 of γ.

3It might seem obvious that that a simple closed curve divides the plane into two regions: one
bounded (the interior), and the other unbounded (the exterior), but the proof is rather involved. This is
the Jordan Curve Theorem, which you will meet in a topology course.
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Example 8. Draw a convex and a non-convex closed curve.

Lemma 3.9. Let γ be a convex simple closed curve which is not a circle. If γ has up to

3 vertices, then there is a straight line dividing γ into two open segments: one on which

κ̇s > 0 and on the other κ̇s ≤ 0 (or κ̇s ≥ 0 on one and κ̇s < 0 on the other).

Proof. : Let γ(s) be its arc-length parametrization and let L be its length. As γ is

assumed to be smooth, κs(s) = γ̈ · ns is clearly a continuous function on the interval

, and so it must attain a maximum and a minimum somewhere on that interval

( theorem). Call these points p and q respectively (these points

are vertices by definition). Consider the following 3 possibilities.

• If γ has only 1 vertex, we must have p = q (max=min). Thus, κs is

on the whole curve, i.e. it is a .

• If γ has only 2 distinct vertices, p and q. Draw a straight line through p and

q. This line clearly separates γ into two segments, with κs increasing on one and

decreasing on the other. Hence the Lemma holds in this case.

• If γ has 3 distinct vertices, p, q and r. Clearly, κs on the three segments must be

either increasing or decreasing. Since there must be two adjacent increasing (or

decreasing) segments (with κ̇s = 0 at the joints), a similar line can be drawn as in

the previous case, and the Lemma still holds.

This strange Lemma simply says that any (non-circular) curve with up to 3 vertices must

comprise two pieces on which κ̇s has opposite signs. We will use this to prove. . .

Theorem 3.10. [Four-Vertex Theorem: convex version] Every convex simple closed

curve in R2 which is not a circle has at least 4 vertices.

Proof. This elegant proof was given by S. Mukhopadhyaya in 1909.

Parametrize γ arc-length. Suppose γ(s) has up to 3 vertices. We will show that a

contradiction follows, and therefore γ must have at least 4 vertices.

• By Lemma 3.9, there is a line ` which divides γ into two segments on which κ̇s has

opposite signs (with κ̇s = 0 only at the vertices).
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• Let’s set up the coordinate axes. Translate the curve along so that the line ` coincides

with the x axis, with the origin falling within the curve (recall: translation and

rotation don’t change κs). Furthermore, we can place the segment with κ̇s ≥ 0 on

top (above the x axis). Let’s draw the figure below.

• Let’s focus on the y coordinate of γ(s) = (x(s), y(s)).

Recall that γ̈ = κsns. Writing this in terms of (x(s), y(s)):

• Now from the setup shown in the figure, we see that the combination κ̇sy is always

non-negative. In fact, on the segment below the x axis, .

This implies that the integral

I =

∫ L

0

κ̇s y ds (3.6)

• However, integrating I by parts, and using the fact that x, y, κ (and their derivatives)

are L-periodic, we find

This contradicts Eq. 3.6, which says that I > 0.
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The convexity condition can be removed, although the proof (published by A. Kneser

in 1912) takes a rather different approach using stereographic projection (which you will

meet in problem sheet 4). We will simply state this general version here (you may state

this version in the exam).

Theorem 3.11. [Four-Vertex Theorem] Every simple closed curve in R2 which is not a

circle has at least 4 vertices.

Example 9. Consider the curve γ(t) = (p cos t, q sin t), where p and q are nonzero. From

Example 5, its signed curvature is given by

κs(t) =
pq

[(p sin t)2 + (q cos t)2]3/2
.

How many vertices does γ have?



Chapter 4
Surfaces

A curve looks almost like a line locally. A line is one-dimensional, so it is possible to

describe a curve with one parameter.

Similarly, a surface is something that’s looks almost like a locally, and so

requires parameters to describe it. We will define it formally later.

The formal definition of surfaces is quite technical. Why? Well, as an analogy, we

can easily understand what a function does, but it takes a bit of work to define them

formally. With the formal definition, we were able to understand why, for instance, the

circle is not a function, but is actually two functions that can be patched together.

Similarly, even though we think we know what looks like a surface, it takes a bit of

work to define them formally, but when we get there we will understand why the sphere

is (or is not?) a surface.

4.1 Prelude

Here are some ideas that we need in this Chapter. Again, you will have seen most of

them before in analysis, calculus or vector calculus.

Definition. For x ∈ Rn, the Euclidean norm (or L2 norm) in Rn is defined as

|x| = (4.1)

Make sure you use the right norm in the right dimension.

41
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Definition. An open ball, Bε(x0) in Rn, is defined as the set

Bε(x0) = (4.2)

where ε > 0 and x0 ∈ Rn.

The norm in this definition is the n-dimensional Euclidean norm. Bε(x0) is also

known as the of x0.

Definition. The set S ⊆ Rn is said to be open if ∀x ∈ S, ∃ε > 0 such that .

Definition. A set is said to be closed if its is open.

Definition. A set {v1,v2, . . .vn} ⊂ Rn is said to be linearly independent if the equation

only has the trivial solution c1 = c2 = . . . = cn = 0.

Although linear independence is strictly a property of the set {vi}, a widespread

abuse of terminology (but a rather convenient one) allows us to say that the vectors vi

themselves are linearly independent.

Definition. A function f : Rm → Rn is said to be continuous at x0 if, ∀ε > 0, ∃δ > 0

such that

=⇒ (4.3)

Remember: a continuous function maps nearby points to nearby points. Note that

the norms in the equation above may be different.

Definition. A function f : A → B is said to be , or C∞, at x0 if f has

continuous partial derivatives of all orders on A.

Definition. The grad operator acting on f(x, y, z) is defined as ∇f = .

(I tend to use the subscript notation for partial derivatives).

Theorem. The vector ∇f is to the surface f(x, y, z) = constant.

(For proof, see Chapter 6 of Vector Calculus.)
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We will be looking at a map from one vector space to another. The thing that tells

you whether such a map is well-behaved (invertible) is the .

Definition. The Jacobian matrix for the map f : Rn → Rm is the m× n matrix

J =
∂fi
∂xj

= (4.4)

When n = m, J is a square matrix. Its determinant, |J | (sometimes also confusingly

called “the Jacobian”) determines whether the inverse function exists locally.

Example 1. Consider a function F : R2 → R2 such that

F (u, v) = (cosu sin v, sinu sin v).

Find the Jacobian and the Jacobian determinant of this function.

Theorem. [Inverse Function Theorem] Let f : Rn → Rn be a smooth function. If the

Jacobian |J | 6= 0 at a point x0 ∈ Rn, then there exists a neighbourhood U of x0 such

that f−1 exists and is smooth (i.e. f is locally a ).

(compare the above with Lemma 1.6). In multi-variable calculus, the Jacobian plays an

analogous role to the derivative in one-variable calculus.

The proof of the Inverse Function Theorem can be found in any analysis textbook.

Question. Is the function in Example (1) invertible?

Theorem. [‘Converse’ to Inverse Function Theorem] If f : Rn → Rn is a diffeomorphism,

then .
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Here are some objects which are prototype of surfaces (yet to be defined).

Example 2. Let p̂ and q̂ be unit vectors in R3 that are linearly independent. Let Π be

the plane which is parallel to these vectors, and passes through the point a. Then Π can

be written as the function σ : R2 → Π, with

σ(u, v) = where (u, v) ∈ R2. (4.5)

Try not to think of the plane as a geometric object, but as the image of a map σ

from R2 to R3.

Example 3. Assuming that p̂ · q̂ = 0, find an explicit expression for σ−1 (the inverse

function of σ).

Example 4. A surface is described by the equation z =
√
x2 + y2. Explain why it has

a rotational symmetry about the z axis. Sketch the surface.

Express the surface in the form σ : R2 → R3. Describe σ−1 in one word.
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Example 5. Using spherical coordinates, write down the equation of the unit sphere in

the form σ : U → R3, where U = [0, π]× [0, 2π). Is σ invertible?

Example 6. Using cylindrical coordinates, write down the equation of the unit cylinder

in the form σ : U → R3, where U = [0, 2π)× R. Is σ−1 a continuous function?

As mentioned in the introduction, a surface can be defined as a 3D object which is

locally 2-dimensional. The previous Examples inspire us to define a surface via a map

from some subset of R2 to a subset of R3. We want this map to have ‘nice’ properties

(e.g. continuous, invertible).

Definition. Two sets A and B are said to be if there exists a

function f : A→ B such that

• f is continuous on A

• f is invertible

• f−1 : B → A is also continuous.

Such a function f is called a .
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Intuitively, homeomorphic objects have ‘essentially’ the same shape. Think of a

homeomorphism can as a sequence of continuous stretching and bending, but not tearing

or gluing (e.g. a book is homeomorphic to a ball, a donut is homeomorphic to a tea cup,

but a donut is not homeomorphic to a book.).

Question. What is the difference between a homeomorphism and a diffeomorphism

defined in Chapter 1? Intuitively, which one is a ‘nicer’ function?

Example 7. Prove that the interval (−1, 1) is homeomorphic to R.

4.2 Definition of a surface

Intuitively, a surface is ‘locally R2’. Here is how to formalise this idea.

Definition. A subset S ⊂ R3 is called a surface if, ∀p ∈ S, there exists an open set

U ⊆ R2, and an open set V ⊆ R3 containing p, such that U is homeomorphic to S ∩ V .

End
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Definition. The homeomorphism σ : U → S ∩ V is called a of

the surface (or a coordinate patch, or a chart).

The reason we always work with open sets is to ensure that σ is invertible. This

is also the reason why, in the previous chapters, we always tried to work with curves

defined on open sets, so that γ may be regarded as a homeomorphism.

Note that a surface may have more than one patch/parametrization (as long as one

exists at every point of S). This kind of ‘patching’ can also be done with curves.

Example 8. In this example, we will consider the unit circle as a surface (with one

dimension suppressed). Study how the definition of a surface works in this case.

Show how the unit circle can be considered as a union of images of homeomorphisms

defined on open sets.
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Definition. The collection of all coordinate patches whose images cover the whole of S

(the patches may overlap) is called an of S.

Example 9. Construct the atlas for the unit cylinder.

For the rest of this course, we will assume that any given σ(u, v) is a parametrization

of a surface, i.e. σ is a homeomorphism, and that all the conditions in the definition of

a surface are satisfied.

4.3 Regular surfaces

Recall why regular curves are important: since γ ′(t) 6= 0, a tangent vector is well defined

at every point. Also, the entire curve can be swept out as t increases, never stopping

and never backtracking (see sheet 1 Q4). We want a similar property for surfaces.

Unlike a curve, which has a unique tangent vector at a given point, there are clearly

many possible tangent vectors at a given point on a surface.

Definition. A tangent vector to a surface S at p ∈ S is the tangent vector of any curve

on S passing through p.

Definition. The tangent space (or tangent plane), , is the set of all tangent

vectors at p.
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Definition. A surface is said to be regular if there exists a parametrization σ(u, v) such

that σu ≡ ∂σ
∂u

and σv ≡ ∂σ
∂v

are .

σ(u, v) is called a regular parametrization of the surface.

End
Let’s try to make sense of this definition.

The vectors σu(p) and σv(p) are two tangent vectors at the point p. If the surface

is regular, then a tangent plane can be drawn at p, with σu(p) and σv(p) lying on the

plane. The linear independence simply ensures that the two tangent vectors span a plane.

In summary:

However, there is a crucial difference between regular curves and regular surfaces.

For curves, regularity is a property of a particular parametrization. You cannot look

at the plot of a curve and tell whether it is regular or not.

For surfaces, regularity is a property of the surface itself (we only need an ideal σ(u, v)

to exist). We can discuss whether a sphere or a plane is regular, without referring to

any specific parametrization. Equally, given a bad parametrization σ(u, v), we cannot

conclude that the surface is not regular.
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Example 10. Sketch some surfaces that are not regular.

If σu and σv span the plane, then the vector is normal to the plane.

We can use this observation to write down an equivalent definition of a regular surface.

Proposition 4.1. A surface is regular if and only if there exists a parametrization σ(u, v)

such that the normal vector N = σu × σv 6= 0 everywhere on the surface.

Proof. This is an exercise in linear algebra (see sheet 4).

Example 11. Show that the following surfaces are regular.

a) The plane b) The unit cylinder

Example 12. Consider a surface parametrized by σ(u, v) = (u cos v, u sin v, u), where

u > 0 and v ∈ (0, 2π). Is this a regular surface?
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Example 13. Show that the surface parametrized by

σ(u, v) =
(√

1− u cos v,
√

1− u sin v, u
)
, u < 1, v ∈ (0, 2π)

is regular. Find the equation of its tangent plane at p where (u, v) = (0, π/4).

(We will sketch this surface in the next question.)
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Now suppose that the surface has a closed-form expression f(x, y, z) = 0. Recall from

vector calculus that the vector is normal to the surface at any given point. By

Prop. 4.1, we deduce the following result:

Theorem 4.2. Suppose a surface, S, is defined by the equation

f(x, y, z) = 0,

where f is smooth. If then S is a regular surface.

Caution! The converse does not hold! If ∇f = 0, no conclusion about the regularity of

the surface can be drawn (see sheet 4).

The proof is slightly technical and I won’t go into here (See Pressley, page 118). We

shall use this result without proof.

Example 14. Redo the previous example using Theorem 4.2. Sketch the surface.



4.3. REGULAR SURFACES 53

Example 15. Use Theorem 4.2 to show that the following surfaces are regular.

(a) x2 + y2 = 1

(b) x2 + y2 = z2, z 6= 0.

(c) z = f(x, y), where f is a smooth function on R2.
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4.4 Surface reparametrization

Just like curves, surfaces can be parametrized (patched) in many ways. Recall from

Chapter 1 that when a regular curve is reparametrized, it is again regular. We will prove

a similar result for surfaces here. But first, some revision on the Jacobian.

Example 16. Describe the surface parametrized by

σ(u, v) = (cosu sin v, sinu sin v, cos v) , (u, v) ∈ (0, 2π)× (0, π/2).

(a) Show that the surface is regular.

(b) The surface can also be parametrized as σ̃(ũ, ṽ) = (ũ, ṽ, f(ũ, ṽ)). Determine f .

(c) Write down a smooth map Φ such that Φ(u, v) = (ũ, ṽ).

(d) Find the Jacobian determinant, |J |, for the transformation Φ. Is Φ invertible?

(e) Sketch a diagram (on the next page) illustrating the two parametrizations of this surface.
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x

The definitions below are very similar to those we have studied for curves.

Definition. σ̃(ũ, ṽ) is said to be a of a surface σ(u, v) if

there is a diffeomorphism Φ such that

(4.6)

Definition. The diffeomorphism Φ linking two parametrizations of a surface is known

as a reparametrization map or a map.
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Proposition 4.3. Let σ(u, v) be a regular parametrization of a surface. Then, its

reparametrization is also a regular parametrization of the surface.

Proof. Let the reparametrization map be Φ(ũ, ṽ) = (u, v), where u = u(ũ, ṽ) and

v = v(ũ, ṽ).

To check that σ̃(ũ, ṽ) is a regular parametrization, we need to check that .

Since σ is regular parametrization, we know that . Also, since Φ is a

diffeomorphism, (this is the converse of the Inverse Function Theorem).

Hence σ̃ũ × σ̃ṽ 6= 0, and so σ̃(ũ, ṽ) is again a regular parametrization.

Let’s compare this with what happened in Chapter 1 for curves. We could talk about

a regular curve rather than a “regular parametrization” of a curve because, once a curve

is regular, its reparametrizations are again regular. If we find a dodgy parametrization

of a regular curve which produces a non-regular curve, then that parametrization cannot

be a ‘reparametrization’ (i.e. not a diffeomorphism).

As we have just shown, the results for regular surfaces are completely analogous.
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Surfaces II – Examples

5.1 Quadrics

The quadric surfaces are a 3D generalisation of the quadratic equation ax2 + bx+ c = 0.

Question. Guess the form of the quadric f(x, y, z) = 0.

Definition. A quadric is an equation of the form

xTAx + b · x + c = 0, (5.1)

where x = (x y z)T , A is a symmetric 3× 3 matrix, b is a constant vector, and c ∈ R.

One can easily multiply out the products to find that Eq. 5.1 is equivalent to the equation

we guessed.

Example 1. Put the following in quadric form (5.1): a) the unit sphere, b) the double

cone, c) The surface x2 + 2y2 − 4z2 + 2xy + yz − 6xz + 1 = 0.

57
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A general quadric with lots of cross terms can be reduced to a simpler form using a

sequence of rotations and translations1. In fact, any quadric can be reduced one of the

14 standard quadrics listed on the next page.

You should find your own way of remembering their names. Clues to their shapes

can be found by setting x = 0 or y = 0 or z = 0, and thinking about any apparent

symmetries (e.g. with respect to rotation or reflection). We will study many interesting

properties of quadrics in the upcoming chapters.

Here are some real-life quadrics. To which class do they belong?

1See Pressley page 101 for the proof based on the ideas outlined here.
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Quadric Equation (a, b, c 6= 0)

x x
x2

a2
+
y2

b2
+
z2

c2
= 1

x2

a2
+
y2

b2
− z2

c2
= 1

−x
2

a2
− y2

b2
+
z2

c2
= 1

Double elliptic cone

z =
x2

a2
+
y2

b2

z =
x2

a2
− y2

b2

Elliptic cylinder

x2

a2
− y2

b2
= 1

y =
x2

a2

x = 0
x2 = a2

x2/a2 − y2/b2 = 0
x = y = 0
x = y = z = 0

Table 5.1: The 14 standard quadrics.
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5.2 Surfaces of revolution

A surface of revolution is generated by taking a curve γ(u) in R3 which is confined to

the x-z plane, say

=

with f(u) > 0, and rotating it about the z axis.

We see that every horizontal slice of the surface is a circle of radius . This

tells us about the x, y components of the 3D surface, which we can parametrize as

(5.2)

Example 2. Give equations of two quadrics which are surfaces of revolution.

In each case, write down the equation of the generating curve γ(u) in the x-z plane, and

the surface parametrization σ(u, v).
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Lemma 5.1. A surface of revolution is a regular surface if and only if it is generated

by a regular curve.

Definition. The meridians of a surface of revolution (5.2) are curves of constant .

The parallels are the circles of constant .

If we think of the Earth as a sphere, then the meridians are just the

and the parallels are the .

Example 3. Prove that on a surface of revolution, parallels and meridians are orthogonal.

(more about parallels and meridians in Chapter 7.)
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5.3 Ruled surfaces

Take a vertical line segment passing through x = 1 and rotate it around the z axis, the

surface of revolution obtained is part of a .

Take a line segment inclined at 45◦ in the x-z plane and rotate it around the z axis,

the surface obtained is part of a .

In fact, the segment could do all sorts of crazy acrobatics, but the surface it sweeps

out is still a union of straight lines. This kind of surface is called a ruled surface.

Definition. A ruled surface can be parametrized by σ(u, v) which is linear in either u

or v (or both). For example,

σ(u, v) = γ(u) + v a(u), (5.3)

where γ and a are curves in R3.

Definition. The straight lines that generate the ruled surface are called

(these are lines of constant in (5.3)). The curve γ is called the

(obtained by setting v = 0 in (5.3)).

Example 4. Show that the following are ruled surfaces. Which quadrics are they?

(a) The surface x2/a2 + y2/b2 = 1, (b) The surface x2 + y2 = z2.
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Example 5. Show that the surface parametrized by σ(u, v) = (cosu− v sinu, sinu+ v cosu, v)

is a ruled surface. Which quadric is this?

Identify the rulings and the base curve. Show that they always intersect at 45◦.

The picture below shows how the cylinder, hyperboloid (of 1 sheet) and cone can all

be generated by twisting a pair of parallel rings joined by taut elastic strings2.

In fact, twisting the rings the other way would give the same surfaces, but with

the rulings going in the opposite direction. This means that the hyperboloid of 1

sheet can be generated by two different families of straight lines, and is said to be

. More about this in problem sheet 5.

(You can see this fact on the picture of the Corporation Street Bridge.)

2see a nice animation (with non-elastic strings) at http://bit.ly/1iHcnio
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5.3.1 The Möbius strip

Let’s finish this Chapter with a very special ruled surface, the Möbius strip3: Take a

vertical line segment in the x-z plane, say, the line joining (1, 0,−1/2) to (1, 0, 1/2), and

rotate it around the z axis. But let’s give the segment a 180◦ rotation before closing up.

It can be shown that this construction leads to the parametrization

σ(u, v) =
((

1− u sin
v

2

)
cos v,

(
1− u sin

v

2

)
sin v, u cos

v

2

)
, (∗)

where u ∈ (−1/2, 1/2) and v ∈ (0, 2π).

Question. Identify the base curve. Trace the path of the curve u = 0.5 in the above

figure.

In problem sheet 5, you will show that the normal vector will also turn upside down

as we go one complete round, i.e., an ‘outward’ pointing normal will end up pointing

‘inward’. Therefore, the Möbius strip has no well-defined notion of inside or outside (it

only has one side).

A surface on which the normal vector field is discontinuous in u or v is called a

surface. The Möbius strip is a classic example of such

a surface.

3August Ferdinand Möbius (1790-1868), German mathematician. His other important contributions
include Möbius transformations in complex analysis, and Möbius function in number theory.



Chapter 6
The First Fundamental Form

We will now study lengths, angles and areas on surfaces, all of which are intrinsic

geometrical properties of surfaces, i.e. measurable by the surface inhabitants who do now

know about the global properties of the surface (e.g. whether the surface has a hole).

The first fundamental form is the name of the quantity which contains all information

on the intrinsic geometry of surfaces. The first fundamental form is one of the most

important concepts in differential geometry.

6.1 Curves on surfaces

Take a curve γ(t) lying on a surface S parametrized by σ(u, v). Let p be a point on γ.

The tangent lies on the tangent plane at p (denoted ). Recall

that this tangent plane is spanned by the basis vectors and .

Therefore, for some λ, µ ∈ R, we can express γ ′ as the linear combination

(6.1)

65
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On the other hand, points on the curve can also be expressed in terms of the surface.

This means that we can treat u, v as functions of t and write

γ(t) =

Differentiating wrt t and applying the Chain Rule, we find

(6.2)

Comparing with (6.1) gives

λ = , µ = . (6.3)

Now, recall from Chapter 1 that the arc-length, s, of γ(t) satisfies

ds

dt
=

This can be expressed in terms of u, v as

(6.4)

Lemma 6.1. Let σ(u(t), v(t)) be the parametrization of a curve γ lying on a surface σ.

The arc-length of γ between t = t0 and t = t1 is given by

(6.5)

where E = σu · σu, F = σu · σv, G = σv · σv

The above result is often expressed in a more traditional form without dt.

Definition. The first fundamental form of the surface parametrized by σ(u, v) is

ds2 = (6.6)
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Example 1. Find the first fundamental form of the cone σ(u, v) = (u cos v, u sin v, u).

Anton the ant lives on the cone. If he walks along the path u = v = t from t = 0 to

t = 1, find an integral expression for the distance he covered.

x

y

z

The first fundamental form helps us measure length on surfaces. This is why it’s also

known as the of the surface.

Example 2. Find the first fundamental form of the plane σ(u, v) = a + up̂ + vq̂, where

p̂ and q̂ are orthonormal vectors.

Re-calculate the distance Anton covered if he were living on this plane instead.
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Example 3. Find the first fundamental form of the surface of revolution

σ(u, v) = (f(u) cos v, f(u) sin v, g(u)).

Hence, obtain the first fundamental forms for the following surfaces:

(a) the unit sphere, expressed in the standard spherical coordinates,

(b) the surface σ(u, v) = (cos v, sin v, u).

Example 4. Prove that the coefficients of the first fundamental form always satisfy

EG− F 2 ≥ 0.
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6.2 The derivative

The fact that the first fundamental forms of the cylinder and the plane are the same is

rather curious. What exactly does this mean?

This motivates us to study what happens to points and curves when they are mapped

from one surface onto another. This section is slightly technical but very important as it

lays the foundation for the rest of the course. Make sure to study this section again.

Consider point p on a surface S. Recall that the tangent space TpS is the union

of the tangent vectors of all curves going through p. Let γ(t) be any such curve, and

WLOG let p = γ(t = 0).

Take any vector w in TpS. Clearly w is a tangent to some curve γ, so that w =

.

We can also express w in terms of the basis of TpS (Eq. 6.2) as

evaluated at t = 0.

Let f be a smooth map from S to S̃ (note that f maps 3D vectors to 3D vectors).

This means, for instance, that p ∈ S is mapped to ∈ S̃, and a curve γ(t) on

S is mapped to on S̃. Note that we are using the same

parameter t to parametrize both the curve on S and its image on S̃ (see diagram below).

The tangent vector w̃ to the image curve is given by

w̃ = (6.7)

This vector lies in the tangent space . The map which takes w to w̃

(mapping one tangent space to another) is called the , simply denoted

as (since the notation in (6.7) is quite cumbersome).
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Definition. Given a smooth map f : S → S̃ and p ∈ S, the derivative Dpf is defined as

Dpf : such that Dpf(w) = w̃. (6.8)

where w̃ is given by (6.7).

In short, f maps a surface to a surface, but Dpf maps a tangent space to a tangent

space. Note that the derivative depends on the map f and the base point p. It’s helpful

to read Dpf as:

Equation 6.7 looks as though the the derivative also depends on the choice of the

curve γ through p, but actually this is not the case, as we will not prove. In addition,

the derivative takes on a simple form when written as a matrix.

Lemma 6.2. The derivative, Dpf , is a linear map which can be represented by the

matrix multiplication

Dpf(w) = . (6.9)

In particular, the derivative is independent of the choice of the curve γ through p.

Proof. The setup is the same as before (refer to previous diagram).

Let σ(u, v) be the parametrization of S and let p = for some curve γ.

Since p lies on the surface, we can also write p = .

Under the map f : S → S̃, let f ◦ σ(u, v) = , where ũ = ũ(u, v) and

Now take w ∈ TpS. Let’s try to express the image, w̃, in terms of the basis of the

new tangent space, namely, and .
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This is all quite messy, but actually things look much simpler if we recast our findings

in terms of matrices written in different bases.

Since w ∈ TpS, we can express it in terms of the basis of TpS as

w = λσu + µσv

where λ = and µ = (see Eqs. 6.1 and 6.2). Expressing this as a

vector written in terms of the basis {σu,σv}:

w =

( )
.

Similarly, we can express w̃ in the basis {σ̃ũ, σ̃ṽ}. Indeed, our long calculations give:

where J is the usual Jacobian matrix for the transformation (u, v)→ (ũ, ṽ). In this con-

text, J acts as the matrix between bases {σu,σv} and {σ̃ũ, σ̃ṽ}.
The matrix equation shows that the derivative is independent of the choice of γ.
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6.3 Induced dot product

Imagine we know all about lengths and angles on one surface S. How are lengths and

angles measured on f(S) = S̃? We now show that the derivative gives us the necessary

tool to perform these measurements on S̃.

Given our study of the derivative, we can write down how f maps a dot (or inner)

product on TpS to a dot product on Tf(p)S̃.

〈v,w〉 ≡ v ·w→ (6.10)

Each side of Eq. (6.10) is a function of any two tangent vectors in TpS. We can

express Eq. (6.10) more abstractly in operator form (without the vector arguments) as:

(6.11)

where the subscript f denotes the fact that this dot product is by f . Each of

these functions takes a pair of vectors and spits out a number.

We can similarly define the induced norm | · |f as follows. Denote the norm |w| ≡√
〈w,w〉. Under the map f , the induced norm is defined as:

Lemma 6.3. For any vector v and w,

〈v,w〉 =
1

2

(
|v + w|2 − |v|2 − |w|2

)
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6.4 Local isometry

We now show that if a map f preserves the dot product, then this is equivalent to the

fact that f preserves lengths and angles on surfaces.

Definition. Let S and S̃ be surfaces. The map f : S → S̃ is called a

if, at every point p ∈ S,

x for all v,w ∈ TpS.

This is what we mean when we say that “the dot product is preserved” by a local

isometry from S and S̃. We can also say that S and S̃ are .

Theorem 6.4. The map f : S → S̃ is a local isometry iff it preserves the first

fundamental form.

Proof. Let S be parametrized by σ(u, v). For example, note that on S, the coefficient

E = , whereas on S̃, Ẽ = .

If f is a local isometry. We want to show that S and S̃ have the same first fundamental

form. Since f preserves the dot product, we see that:

Thus, f preserves the first fundamental form.

Conversely, if f preserves the first fundamental form, we want to show that

Take any w ∈ TpS. We can write w as a linear combination of and as:
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This means that | · | = | · |f , i.e. f preserves length of a vector. By Lemma 6.3, f also

preserves the dot product. Therefore, f is a local isometry.

Recall from the beginning of this chapter that the first fundamental form determines

the length of curves on surfaces. Hence, we immediately have the following results.

Corollary. The following are equivalent.

• f is a local isometry.

• f preserves the .

• f preserves the on TpS and on Tf(p)S̃.

• f preserves the on S and on S̃.

These results give us several ways to check whether two surfaces are locally isometric.

It’s usually easiest to work with the first fundamental form.

Corollary. The cylinder (Example 3) and the plane (Example 2) are locally isometric.

Example 5. Show that the surface σ(u, v) = (u cos v, u sin v, u) with 0 < u < 1 and

0 < v < 2π, is locally isometric to the surface

σ̃(ũ, ṽ) =

(√
2ũ cos

ṽ√
2
,
√

2ũ sin
ṽ√
2
, 0

)
, with 0 < ũ < 1, 0 < ṽ < 2π.
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6.4.1 The meaning of local

The previous results give us an intuitive meaning behind the word isometry (from Greek,

isos= equal, metria= measure). If two surfaces are isometric, then the inhabitants on

both surfaces see the same lengths and angles. But what exactly is local about this?

The plane and the cylinder are locally isometric. Intuitively, this means that, a small

piece of a cylinder looks like a plane to its inhabitants.

But globally there is a difference – you can’t smoothly transform a cylinder to a plane

(a pair of scissors is needed).

Definition. A global isometry is a local isometry which is also a homeomorphism.

If S and S̃ are globally isometric surfaces, all continuous paths between two points on

S are mapped to those on S̃ (and vice versa) in a 1-to-1 correspondence, and all these

corresponding paths have the same length (thanks to the length-preservation property).

In particular, this means that the shortest path between two given points on S is also

mapped to the shortest path on S̃.

We can now see heuristically why the cylinder can’t be globally isometric to the plane:

The shortest distance between two points is not necessarily preserved.

In fact, the cylinder and the plane aren’t even homeomorphic. To see this intuitively,

note that a simple closed curve in the plane can be shrunk to a point (without leaving the

plane. This property should hold under a homeomorphism (i.e. stretching and bending).

However, this property does not necessarily hold on the cylinder.

However, if the two points are within a sufficiently small neighbourhood, then there’s

no problem: shortest distances are preserved, and closed curves can shrink to a point.

This is the sense in which the isometry between these surfaces is only a local one.1

1We can make these statements more rigorous by invoking the inverse function theorem: a smooth
map from S to S̃ is a homeomorphism in some neighbourhood of p ∈ S if the Jacobian of the mapping
is nonzero. Thus, a local isometry is a global isometry within a sufficiently small neighbourhood.
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6.4.2 What does all this mean for Anton the ant?

Anton the ant lives on an A4-paper world. He has studied the geometry of his world by

measuring lengths of between places, angles between roads, area of his local park etc.

and has written a book compiling all his measurements. He is unaware of, and unable to

explore, the 3D space outside the surface.

One day, strong wind blows the piece of paper on which Anton lives, landing it in a

strange deformed configuration (luckily it’s not creased, torn or somehow perfectly rolled

and glued into a tube).

The wind has now died down, and Anton then sets about remeasuring all the results

that he compiled in his book. What would he now find?

He will find that all his measurements are still exactly the same. In this Chapter, we

have shown that his measurements of lengths will be unchanged. In Chapter 7, we will

show that his measurements of angles and areas are also unchanged.

A surface inhabitant like Anton who can only measure intrinsic geometry of the

surface (e.g. length, angle, area) is unable to decide whether he lives on a plane or any of

the shapes shown below, which are all locally isometric to the plane. This is true despite

the fact that to an observer outside the surface, it is easy to distinguish between them.

In fact, Anton is even able to measure a kind of curvature of his new world, called

the Gaussian curvature, which is also unchanged everywhere despite the deformation

of the paper. This is the famous Theorema Egregium (‘remarkable theorem’) of Gauss.

More about this in Chapter 8.



Chapter 7
Conformal and Equiareal maps

A (local) isometry preserves length on different surfaces. In this Chapter, we will study

special maps that preserve angle or area on surfaces.

7.1 Angle-preserving maps

Suppose that we have two curves γ1(t) and γ2(t) on surface S parametrized by σ(u, v). If

the curves intersect at p = γ1(0) = γ2(0) (we can always rescale t so that this happens),

what is the angle at which the curves intersect?

The answer is simply the angle, θ, between the tangent vectors to the curves at p.

Thus, calculating the angle between curves reduces to calculating the angle between

vectors on TpS. But writing these tangent vectors (say, v and w) as linear combinations

of and , we see that

and thus the problem further reduces to finding the angle between those basis vectors,

i.e. the first fundamental form.

77
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Lemma 7.1. Let S be parametrized by σ(u, v) and p ∈ S. The angle, θ, between σu

and σv on TpS can be expressed in terms of the first-fundamental-form coefficients as

cos θ =

Proof:

Example 1 (An extension of Example 5 in Chapter 5). Find an expression for the angle

between σu and σv on the hyperboloid of 1-sheet

σ(u, v) = (cosu− v sinu, sinu+ v cosu, v).

Indicate this angle on a sketch. Explain what happens to the angle as v increases from 0

to infinity.
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Example 2. Recall when Anton the ant walked on the cone in Chapter 6 – he walked

along the path u = v = t from t = 0 to t = 1. Calculate the angle that his trajectory

makes with the rim of the cone.

x

y

z
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Let’s now consider a map, f : S → S̃, between 2 surfaces. The curves γ1 and γ2

(intersecting at angle θ on S) are mapped onto two intersecting curves and

. The new angle of intersection could potentially be different from θ.

Again this problem reduces to comparing two angles:

• the angle, θ, between vectors v and w on TpS

• the angle, θ̃, between

Definition. A diffeomorphism1 f : S → S̃ is said to be a if

θ = θ̃ (as defined above). In other words, f is conformal if, for all v,w ∈ TpS,

= (7.1)

It’s easy to remember this definition in words:

Theorem 7.2. The diffeomorphism f : S → S̃ is a conformal map iff there exists a

function λ : S → R, with λ(p) > 0 for all p ∈ S, such that

(?)

for all p ∈ S and v,w ∈ TpS.

1we require f to be a diffeomorphism so that regular curves are mapped onto regular curves, i.e.
their tangents don’t become degenerate. See exercise 4.4.4 in Pressley for details.
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Proof. Suppose (?) holds.

To prove the converse, see problem sheet 7 for a step-by-step guide.

By letting v and w be σu and σv in (?), we see that:

Corollary. f is a conformal map iff the first fundamental forms of S and S̃ are related

by

Example 3. Prove that all local isometries are conformal maps.
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Example 4. Using standard identities for cosh and sinh, prove the following identities:

sech2 u+ tanh2 u = 1,
d

du
sechu = − sechu tanhu,

d

du
tanhu = sech2 u.

Show that the surface parametrized by

σ(u, v) = (sechu cos v, sechu sin v, tanhu) (7.2)

is conformal to a plane. What surface is this?
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Definition. A surface S is said to be if its first fundamental

form satisfies

ds2 = λ2(u, v)( du2 + dv2).

Conformally flat surfaces are particularly interesting because angle measurements

alone (i.e. trajectories of light rays, trajectories of ships sailing on the surface. . . ) will

not be able to distinguish the surface from a plane.

Example 5. Enneper’s surface is parametrized by

σ(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

Show that E = (1 + u2 + v2)2. Is it conformally flat?
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Here is another important conformal map. the stereographic projection from sheet 4.

In sheet 7 you will prove that it is a conformal map.

The pictures below show some variants of this projection2. Note that perpendicular

lines on the 2D grid correspond to perpendicular lines on the sphere, but the area of

each grid element is distorted.

x

2Left: See Henry Segerman’s website http://www.segerman.org for more 3D printed maths objects.
Right: Rubens (1577-1640) was commissioned to draw this for the cover of a textbook on optics.

http://www.segerman.org
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7.2 Area-preserving maps

Consider a surface parametrized by σ(u, v). What is the area on the surface over some

given range of u and v?

Let’s divide the area into small parallelograms as shown, and consider the vectors

representing the two sides of the parallelogram.

Proposition 7.3. The area of the portion of the surface parametrized by σ(u, v) corre-

sponding to the domain where (u, v) ∈ R is given by

(7.3)

Proposition 7.4. The area of a parametrized surface is unchanged by a reparametriza-

tion. This echoes the result for the length of a curve which is unchanged by a

reparametrization. I have included the proof of this statement at the end of this

Chapter.
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Example 6. Using spherical coordinates, calculate the surface area of the unit sphere.

The area formula (7.3) could be used as it is, but it’s often easier to express it in terms

of the first-fundamental-form coefficients. The resulting formula has no cross products.

Definition. The metric tensor of a parametrized surface is defined as the matrix

g ≡ (7.4)

Here is a handy identity to help you avoid calculating a cross product. This is useful not

only when dealing with area of surfaces, but also for showing that a surface is regular.

Proposition 7.5. |σu × σv| =

Proof. Recall the following formula from vector calculus

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c),

(you should try proving this using the εijk technique). Now substitute . . .
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Lemma 7.6. The area of the surface σ(u, v) with metric g is given by

(7.5)

Example 7. Recalculate the surface area of the sphere using the first fundamental form.

Definition. A map f : S → S̃ is said to be if it maps any region in S

to a region of the same area in S̃.

We saw in Theorem 6.4 that a map is length-preserving iff it preserves g. The next

theorem shows that a map is area-preserving iff it it preserves .

Theorem 7.7. Let f : S → S̃ be a diffeomorphism, with S and S̃ parametrized by

σ(u, v) and σ̃(ũ, ṽ). Then, f is equiareal iff

(7.6)

where E = 〈σu,σu〉 and Ẽ = 〈σu,σu〉f , etc. .

Proof. If (7.6) holds, then the area is clearly preserved. Conversely, if∫∫
R

√
det g du dv =

∫∫
R

√
det g̃ du dv

for all regions R in the domain, then we must have det g = det g̃. See problem sheet 7

for details on this last step.
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7.2.1 Cylindrical projection

Have you ever noticed that the surface area of a sphere equals that of the cylinder which

exactly contains it?

We now study one of the most famous equiareal maps, attributed to Archimedes who

discovered this in ∼ 250BC.

Archimedes showed, using rudimentary geometrical arguments (remember this is

pre-calculus era), that any horizontal strip on the sphere has the same area as the same

strip on the cylinder which exactly contains the sphere.

Archimedes’ tombstone (now lost) was said to be inscribed with a sphere contained

within a cylinder. Here we study a proof of his result using differential geometry.

Consider the cylindrical projection, f , mapping the sphere to the cylinder where

σ(u, v) = (
√

1− u2 cos v,
√

1− u2 sin v, u), u ∈

σ̃(u, v) = (cos v, sin v, u), u ∈

(I’ve dropped the pesky tildes). Note that the z coordinates of the sphere and cylinder

are the same.

Theorem 7.8. (Archimedes’ Theorem) The cylindrical projection is equiareal.

Proof:
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Thus, we can choose any region, R, on the sphere and project it horizontally to a

region, R̃, on the wrapping cylinder. R and R̃ will have the same area.

In particular, the patches we chose cover the entire sphere and cylinder (with straight

lines removed – they have zero area anyway), so the entire sphere and the cylinder have

the same surface area.

Question. Is the cylindrical projection a conformal map? Is it a local isometry?

The cylindrical projection can be used in cartography (map-making). The resulting

map, called the Lambert cylindrical projection of the Earth, is one which does not distort

areas (unlike the popular Mercator projection which you will study in problem sheet 7).

However, the Lambert projection distorts lengths and angles.

Question. Is there a map of the Earth that preserves both area and angle?

We’ll come back to this question in the next (and final) Chapter.

7.3 Summary

Type of map Defining property What’s preserved?

x x x x x x
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Optional extra:

Proof of Proposition 7.4: The area of a parametrized surface is unchanged by a

reparametrization.

Proof. Let the surface S be parametrized by σ(u, v) with (u, v) ∈ U . Suppose it can

also be parametrized as σ̃(ũ, ṽ) with (ũ, ṽ) ∈ Ũ . Let the surface areas under the two

parametrizations by A and Ã.

From the proof of Proposition 4.3, we showed that

σ̃ũ × σ̃ṽ = det J (σu × σv).

where J is the Jacobian of the reparametrization Φ(ũ, ṽ) = (u, v). Therefore,

Ã =

∫
R̃

|σ̃ṽ × σ̃ṽ| dũ dṽ

=

∫
R̃

|σv × σv|| det J | dũ dṽ

=

∫
R

|σv × σv| du dv (†)

= A,

where at step (†), we used the formula for a change of area element in 2D integrals (see

Vector Calculus).

Alternatively, we can work with the metric determinant instead of the cross product.

Using question 3 of sheet 4, we showed that under the reparametrization Φ, the metric g

transforms as

g̃ = JTgJ =⇒ det g̃ = (det J)2 det g.

Square-rooting and integrating both sides with respect to ũ and ṽ then lead to the same

conclusion.
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Curvature of surfaces

8.1 Motivation

How do we measure the curvature of a surface? Recall that for a plane curve, γ(t), its

curvature is completely characterised by the signed curvature, κs, which, according to

problem sheet 2, satisfies the equation

ṅs = −κst =⇒

where t is the tangent vector and ns is the (see §2.2). Loosely, we

can say that for a plane curve, its signed curvature is the (negative of the) rate of change

of the normal vector in the direction of the tangent vector. It makes

intuitive sense that a curve whose normal changes rapidly seems to curve more than one

whose normal does not change much.

We could try to extend this idea to quantify how much a surface curves. Recall from

sheet 5 that the standard unit normal of a surface σ(u, v) is defined as

N̂ ≡

91
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The “rate of change” of this quantity is captured by two partial derivatives: and

. We then project (or dot) them in the direction of some unit tangent vector,

which, for surfaces, is a linear combination of and .

Thus, the quantities that could help us measure the curvature of a surface are:

(8.1)

(actually we will show later that two of them are equal). We will use these quantities to

define the second fundamental form. We will show that the first and second fundamental

forms together completely capture the information about the curvature of a surface.

8.2 The Gauss map

Let’s examine the unit normal N̂ more carefully.

Any unit vector can be thought of as a vector joining the origin to a point on the

unit sphere, and N̂ is no exception. In this sense, we can think of N̂ is a map from a

point p on a surface S, to a point N̂(p) on the unit sphere.

We will be talking about the unit sphere a lot so let’s refer to it by the standard

nickname1 S2, i.e.

(8.2)

Definition. The Gauss map, N̂ : S → S2, is defined as follows: ∀p ∈ S, N̂(p) is the

standard unit normal at p.

Thus, the Gauss map is simply a fancy way of thinking about the standard unit

vector as a mapping (rather than a vector).

1S1 is the unit circle. Sn is defined by the equation x21 + x22 + . . . x2n+1 = 1
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Example 1. No calculations allowed. Describe the image of the Gauss map of

a) The unit sphere, b) the unit cylinder, c) a plane.

In the above examples, we have assumed that the normals are all pointing upwards

or outwards. What would happen if we assume the opposite orientation of the normals

in the above examples?

Note that the concepts of in/out/up/down do not make sense on non-orientable surfaces

like the . In this Chapter we will only deal with orientable surfaces.

Question. (A challenge) Describe the image of the Gauss map of the Möbius strip.

Example 2. Calculate the Gauss map N̂ of the surface σ(u, v) = (u cos v, u sin v, u2),

where u > 0 and v ∈ (0, 2π). Calculate N̂ and describe the image of N̂.
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It’s worth clarifying our notation at this point. N̂ can be regarded as either a vector,

or a map. We will not distinguish our notation as it should be clear from the context in

what form we are regarding N̂ as. In particular, note that in this equation:

N̂ = N̂ ◦ σ(u, v), (8.3)

N̂ on the LHS is a vector, but on the RHS it is regarded as a map.

Before we proceed further, let’s state a couple of nice observations (easy to prove).

These are analogous to the Frenet frame for curves.

Lemma 8.1. Let σ(u, v) be a regular surface with first fundamental form coefficients

E,F,G.

• {N̂,σu,σv} form a of R3.

• If F = 0, the basis is .

• If E = G = 1 and F = 0, then the basis is .

Example 3. Prove that

(a) N̂u · N̂ = N̂v · N̂ = 0.

(b) N̂u · σu = −N̂ · σuu and find 3 other similar results.

Deduce that N̂u · σv = N̂v · σu.
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8.3 The Weingarten map

The Gauss map takes a surface S to (part of) S2. How are their tangent spaces related?

Recall that the mapping between two tangent spaces is just the .

: TpS → TN̂(p)S
2. (8.4)

The tangent plane TN̂(p)S2 contains all vectors perpendicular to the normal N̂(p),

which, by definition, is just . Thus the derivative of N̂ can be regarded as a

map from TpS onto itself:

(8.5)

Let’s see exactly how this derivative looks like.

Theorem 8.2. Let p ∈ S. The derivative of the Gauss map satisfies

DpN̂(σu) = N̂u DpN̂(σv) = N̂v

(In other words, for the Gauss map, the differential-geometry concept of derivative reduces

to the usual partial derivative.)
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Proof: Let’s prove the first equation: DpN̂(σu) = N̂u (the other one is similar). Here

are some facts from Chapter 6: Any w ∈ TpS can be thought of as a tangent vector to

some curve γ(t), evaluated at say, at t = 0

w = (8.6)

By definition, the derivative DpN̂ gives the tangent of the mapped curve (Eq. 6.7).

DpN̂(w) ≡ (8.7)

Pick a point p = σ(u0, v0). Consider the curve γ(u) = σ(u, v0) (a curve on which

v=constant) undergoing the mapping N̂. The image of the tangent vector γ ′(u) =

σu(u, v0) is, by definition, the derivative of σu. In symbols:

DpN̂(σu) = (8.8)

The RHS is an overly complicated way to express what is simply (see Eq.

(8.3)).

There’s a special name for the (negative of) derivative of the Gauss map.

Definition. The Weingarten2 map W : TpS → TpS is defined as

(8.9)

For example, the previous theorem can be expressed in terms of the Weingarten map as:

(8.10)

The minus sign is just a historical convention, just like the minus sign in κs = −ṅs · t.

2Julius Weingarten(1836-1910), German mathematician who made important contributions to
differential geometry. Note that in some books, the Weingarten map is called the shape operator.
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8.4 The second fundamental form

Our train of thought so far:

• To quantify ‘curvature’ at a point on a surface, we measure the rate of change of

the unit normal vector N̂, projected in some tangential direction (taking the queue

from the formula κs = −ṅs · t).

• The analogues of ṅs are N̂u and N̂v.

• The analogue of t is any vector w ∈ TpS, which is a linear combination of σu,σv.

• Thus, curvature could be measured by the four quantities:

• Alternatively, from Example 3, these quantities look like:

• In terms of the Weingarten map, W , these quantities look like:

In general, for a given w ∈ TpS, the expression will contain contri-

butions from all four curvature quantities at that point. We now show that W (w) ·w
can be expressed in a similar way to the first fundamental form.

Lemma 8.3. Let p be a point on surface S parametrized by σ(u, v). For any w ∈ TpS,

let w be the tangent to a curve γ(t) = σ(u(t), v(t)) passing through p. We have

W (w) ·w = L

(
du

dt

)2

+ 2M
du

dt

dv

dt
+N

(
dv

dt

)2

(8.11)

where L = , M = , N = .

Proof :
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Equation 8.11 can be written in a similar way to the first fundamental form by

defining

II ≡ W (w) ·w dt2 (8.12)

Definition. The second fundamental form of the surface parametrized by σ(u, v) is

defined as the expression.

II = (8.13)

Information on the curvature of a surface is (partly) contained in the second funda-

mental form. Exactly how to fully extract this information remains to be seen. . .

Example 4. Calculate the second fundamental form of the following surfaces:

(a) σ(u, v) = a + up̂ + vq̂ (where p̂ and q̂ are constant orthonormal vectors)

(b) σ(u, v) = (cos v, sin v, u).



8.5. THE WEINGARTEN MAP IN MATRIX FORM 99

8.5 The Weingarten map in matrix form

Suppose Anton lives on the unit cylinder, and we have asked him to measure how much

the cylinder curves at a point p on the cylinder. You can see that the answer depends

on the route that Anton takes across p.

Thus, we expect that there will be several definitions of surface curvature. We will now

show that all types of curvatures can be fully extracted from the Weingarten map, which

can be expressed as an elegant matrix. This is where the first and second fundamental

forms come together in a grand conclusion!

Theorem 8.4. Let a surface S be parametrized by σ(u, v). The Weingarten map W

can be expressed in matrix form as

W =

where the matrix represents a linear transformation wrt the basis {σu,σv}. g and FII
are matrices of the coefficients of the first and second fundamental forms:

g = FII =

Proof. From Eq. 6.9, we know that W : TpS → TpS is a linear transformation (linearity

inherited from the derivative), and can be represented by a matrix. To express W in the

basis {σu,σv}, let’s see how it acts on each of the basis vectors. Suppose that

Wσu = (∗)

Wσv =
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for some numbers a, b, c, d. With respect to the basis {σu,σv}, the above equations can

be written as:

W

(
1

0

)
=

On the other hand, dotting equations (∗) with σu and σv yields four equations.

Example 5. Find the Weingarten map W (in matrix form) for the plane and the cylinder

in Example 4.
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Example 6. Find a general expression for the matrix W in terms of E,F,G, L,M,N.

8.6 Types of curvatures

We have shown that information about the curvature can be represented by a matrix W

which, as a linear transformation wrt the basis {σu,σv}, looks fairly simple. What if we

choose a different basis? Whatever quantity which represents the physical concept of

“curvature” shouldn’t depend on the choice of basis.

What properties of a matrix are unchanged by a change of basis? Linear algebra tells

us that these are properties preserved by similar matrices, for example:

These are all good candidates for capturing the essence of surface curvature.

Definition. The Gaussian curvature, K, is defined as

(8.14)

Definition. The mean curvature, H, is defined as

(8.15)

Definition. The principal curvatures, κ1 and κ2, are defined as the

of W

These are not all independent quantities. Since K and H are invariant wrt to change

of basis, we could diagonalise W and obtain the following result.

Corollary. The mean and Gaussian curvatures are related to the principal curvatures

as follows:
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Example 7. Find the Gaussian, mean and principal curvatures for the plane and the

unit cylinder.

The previous Example gave us a glimpse into the meaning of these curvatures.

For instance, the cylinder has one circular direction (κ = 1) and one flat direction

(κ = 0), so it makes sense that the mean curvature is indeed 1/2.

The cylinder can be thought of as a rolled up plane, and K = 0 on both objects.

This is because the Gaussian curvature is, in fact, an intrinsic property of a surface that

is invariant under local isometry (i.e. length-preserving transformations like bending,

rolling, twisting). We won’t prove it here, but will simply state the result in the next

section.

Example 8. ExpressH andK in terms of the fundamental-form coefficientsE,F,G, L,M,N .
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8.7 Concluding remarks

By now you should have a good idea of what differential geometry is all about. We

have seen how geometrical properties of curves and surfaces can be studied using a

combination of calculus, linear algebra and analysis.

Let’s wrap up this course with a few remarks to tie up loose ends, and to give you a

glimpse of what lies beyond this course. The results in this section are non-examinable.

8.7.1 Area interpretation of the Gaussian Curvature

Theorem 8.5. Suppose an area element dA on a surface S is mapped onto an area dÃ

on the unit sphere via the Gauss map, N̂, then

|K| dA = dÃ

Proof. The area element on S parametrized by σ(u, v) is given by

dA =

The Gauss map sends this area to dÃ on the unit sphere, where, from Theorem 8.2

dÃ =

From the proof of Theorem 8.4, we find the following expressions for N̂u and N̂v:
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Amazingly, the Gaussian curvature is just a ratio of area elements post- and pre-

Gauss map. From this result, you can see why K = 0 for the cylinder and plane: the

area element post-Gauss map is zero (see the drawings we made in Example 1).

8.7.2 Gauss-Bonnet Theorem

Recall Hopf’s Umlaufsatz for curves:

The signed curvature is a ‘local’ quantity (i.e. defined at a point on a surface), but

the total signed curvature is clearly a global property of closed curves.

A similar link exists for surfaces. The Gaussian curvature K is a local property but

the total Gaussian curvature.

is a global property of ‘closed’ surfaces. If we assume that the image of the Gauss map

for a closed and bounded surface covers the entire unit sphere, so that we have

where we have used Theorem 8.5. This result is a special case of one of the most profound

theorems in differential geometry: the Gauss-Bonnet3Theorem, which says:

Theorem 8.6. [Gauss-Bonnet Theorem] Let S be a compact surface, then

=

where χ = 2− 2g, and g is the (the number of holes) on the surface.

The surface constant χ is called the .

The Gauss-Bonnet theorem holds not only for ‘smooth’ surfaces, but also for solids such

as a cube or a dodecahedron. This single theorem is the bridge that connects differential

geometry (the LHS of the above quation) to topology (‘rubber-sheet geometry’) on the

RHS.

3Pierre Ossian Bonnet (1819-1892), French mathematician famed for his contribution to differential
geometry. He was a contemporary of Frenet and Serret.
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8.7.3 Theorema Egregium

Every mathematician knows that the German mathematician Carl Friedrich Gauss (1777-

1855) ranks amongst the top mathematical minds ever. Amongst his many illustrious and

wide-ranging achievements, his ‘remarkable theorem’ (as he himself called it) is indeed

one of the most remarkable. We state it here without proof.

Theorem 8.7. [Gauss’s Theorema Egregium] The Gaussian curvature, K, can be ex-

pressed solely in terms of the first-fundamental-form coefficients E,F,G and their deriva-

tives.

This means that local isometries do not change Gaussian curvature, i.e. one can

regard K is a ‘bending invariant’ which is an intrinsic property of surface, like its area,

its thickness or its density. Anton, for instance, will find that his measurement of K is

the same before and after the incident at the end of Chapter 6.

In fact, K can be written explicitly in terms of E,F,G as

K =
1

(EG− F 2)2

(∣∣∣∣∣∣∣
−1

2
Evv + Fuv − 1

2
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1
2
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2
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2
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1
2
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1
2
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1
2
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1
2
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∣∣∣∣∣∣∣
)
.

(8.16)

This is sometimes called the ‘Brioschi formula’. You can quickly verify that it works

for the plane and cylinder.

8.7.4 A perfect map doesn’t exist

Here is the final word on cartography, courtesy of the Theorema Egregium.

Lemma 8.8. There exists no geographical map of any portion of the Earth which is

both equiareal and conformal.
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Proof. Suppose there exists such a map. By Q1 of problem sheet 7, this map is a

. This means the first fundamental forms are the same on the

sphere and the plane. The Theorema Egregium implies that K is the same on these

surfaces. However, K = on the plane, and K > 0 on the sphere (see problem sheet

8). A contradiction.

8.7.5 The Fundamental Theorem of Surfaces

Theorem 8.9. [Fundamental Theorem of Surface Theory] Let E,F,G, L,M,N be any

smooth real-valued functions of u and v.

[Existence] There exists a regular, orientable surface S, parametrized by σ(u, v) with the first

and second fundamental forms given by

E du2 + 2F du dv +G dv2 and L du2 + 2M du dv +N dv2.

[Uniqueness] The surface is unique up to translation and rotation.

8.7.6 Looking ahead

Many results we study in this course can be generalised to higher dimensions. A manifold

is a topological space which looks like Rn locally (a surface is a 2-dimensional manifold).

Differential geometry on higher-dimensional manifolds is the most fundamental tool in

the studies of general relativity, particle physics, string theory and cosmology.

Interesting topics for further studies in an advanced course on differential geometry

include geodesics (shortest routes on surfaces), minimal surfaces (what shape does a

soap bubble form?) and non-Euclidean geometry (could parallel lines diverge?).

“Es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern

das Erwerben, nicht das Dasein, sondern das Hinkommen, was den größten

Genuß gewährt.”

It is not knowledge, but the learning; not the possession, but the acquiring; not

the being-there, but the getting-there, that gives the greatest joy.

– Carl Friedrich Gauss
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