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CHAPTER 1

CONTINUITY

We wish to give a mathematical definition of what it means for a function to be continuous.

This is one of the most important concepts in analysis. In this course, we will focus on

real-valued functions defined on R. Extensions to functions defined on C and Rn will

follow naturally in Analysis III and Multivariable Calculus next year.

At this point, continuity is still only an intuitive concept for most students. In

particular, you may have been taught in school that the graph of a continuous function

can be drawn without lifting the pen.

Example 1. Sketch the graph of a function (in the x-y plane) which fits with your

intuition of a) a continuous function, b) a discontinuous function.

Although this seems to make a lot of intuitive sense, mathematics at university is all

about , so our first task is to define exactly what it means for a function

to be continuous, using mathematical symbols without any drawings.
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1.1 The ε-δ definition of pointwise continuity

Consider a real-valued function f defined on a subset A of R. In symbols, we write

. Recall thatA is called the andB the .

Looking at your discontinuous example, you might agree that it may be better to

start defining continuity , say, ∈ A.

The mathematical definition of pointwise continuity which has become standard today

was first published by Bolzano1 in 1817.

Definition. A function f : A→ R is said to be continuous at x0 ∈ A if

This is one the most important definitions you will study in your time at university.

However, at the moment this definition probably won’t make much sense to you, so let’s

try to unpack what it says.

The intuitive idea behind continuity at the point x = x0 is that we can’t have any

gaps in the y values f(x0) (let’s call this y value y0). Let’s make a quick

sketch.

1Bernhard Bolzano (1781-1848), a Bohemian mathematician, logician and Catholic priest, best
remembered today for his important contributions to analysis.
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If f is continuous at x0, it makes sense to demand that we can always find y values

close to y0 = f(x0). Symbolically, the set of “all y values arbitrarily

close to y0” can be expressed as follows.

Definition. Let ε > 0 and y0 ∈ R. The ε-neighbourhood of y0 is the set:

Occasionally, we denote the above neighbourhood as .

Now, we want the y values inside the ε-neighbourhood of y0 to “come from” some

values of x. In other words, there should be some x values such at that y = . It’s

natural to demand that those values of x should also be in some neighbourhood of x0.

We are satisfied as long as “ such a neighbourhood” in the domain A.

This statement can be written symbolically as:

Combining what we have discussed so far, we say that a function f is continuous at

x = x0 if there exists a neighbourhood of x0 which gets mapped by f into an arbitrarily

small neighbourhood of y0 = f(x0). Symbolically, we write:

This explains the intuition behind the definition. I strongly encourage you read this

many times over, and continue to think about it obsessively! Some remarks:

• Do say: f is continuous. Don’t say: f(x) is continuous.

• The ordering of the quantifiers ∀ε and ∃δ cannot be exchanged in the ε-δ definition.

In general, δ will depend on ε (think about why this makes intuitive sense).

• If you can find a certain value of δ that works, then so will any other values δ′ such

that 0 < δ′ < δ. Can you see why this is true? Often you will find that there is

usually a largest value of δ that works for each choice of ε. See Quiz 1.
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1.2 Examples

We can use the ε-δ definition to prove that a given function is continuous at a given

point (although we will see later how this can often be avoided). This kind of proof (also

called proof from first principles) may seem a bit tricky at first, but with practice you

will soon get the idea behind the ε-δ game, which is essentially a hunt for an expression

for δ in terms of ε that would fit precisely with the definition of continuity. There are

infinitely many possible answers!

Example 2. Prove that the following functions f : R→ R are continuous at x = 0.

a) f(x) = 3x b) f(x) = ax+ b (for some a, b ∈ R.) c) f(x) = x2 + 1.

[Can you see other possible values of δ that work for these proofs?]
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Sometimes more tricks are needed. For beginners, I recommend working on a draft

proof before writing it out properly.

Useful inequalities: Let a, b, c ∈ R, we have the following:

|a| < 1 =⇒ |a| > 1 =⇒

a < b and b < c =⇒ a < a < b and a < c =⇒ a <

Triangle inequality :

Reverse triangle inequality :

Example 3. Prove that f : R→ R defined by f(x) = x2 is continuous at x = 1.

[Hint: If we’re stuck, we should recall that the smaller the δ the better chance we have of

making the proof work, so it may help to try to put an upper bound on δ.]
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Beware of denominators! Always check if they could be zero and mitigate accordingly.

Example 4. Prove that f : → R defined by f(x) = 1/x is continuous at all

x 6= 0.



1.3. ALGEBRA OF CONTINUOUS FUNCTIONS 9

1.3 Algebra of continuous functions

ε-δ proofs can get very tedious. It would save a lot of work if we can show that the sum,

product and composition of continuous functions are again continuous. But first:

Question. For f : A → R, suppose that ∀ε > 0,∃δ > 0 such that for all x ∈ A,

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε/2. Is f continuous at x0?

Theorem 1.1. If f, g : A → R are both continuous at x0 ∈ A, then the function h

defined by

h(x) = f(x) + g(x)

is also continuous at x0.

[Study the proof in Quiz 1 and reproduce it here.]

Proof :
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Theorem 1.2. If f, g : A → R are both continuous at x0 ∈ A, then the function h

defined by

h(x) = f(x)g(x)

is also continuous at x0.

Proof :
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When it comes to function compositions, I always find that a sketch (of what function

maps which domain to where) helps.

Theorem 1.3. Let f : A→ R be continuous at x0 ∈ A. Let g : B → R be continuous at

f(x0), and f(A) ⊆ B, then the function h defined by

h(x) = g ◦ f (x) = g(f(x))

is also continuous at x0.

[Study the proof in Quiz 1 and reproduce it here.]

Proof :
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Theorem 1.4. If f : A→ R is continuous at x0 ∈ A and f(x0) 6= 0, then

(a) 1/f is a well-defined function in some neighbourhood Nδ(x0) ⊂ A,

(b) 1/f is continuous at x0.

Proof :

In summary, the Algebra of Continuous Functions refers to the fact that pointwise

continuity is preserved under addition, multiplication, division and composition of

functions (T&Cs apply). Here’s a nice consequence of the AoCF.

Corollary. Functions of the form P (x)/Q(x) (where P (x) and Q(x) are polynomials)

are continuous at all x ∈ R where .

You should try writing down a chain of justification and identify what results are needed

to prove the above result.
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1.4 Discontinuity

How can we prove that a function is discontinuous at a point? We will study two methods

in this section.

1.4.1 Method I: Negating the definition

First let’s do a bit of logic revision. Let P (δ), Q(ε) and R(ε, δ) be statements which

depend on variables ε, δ.

Example 5. Negate (say the opposite) of the following statements.

(a) ∀ε,Q(ε).

(b) ∃δ : P (δ).

(c) P =⇒ Q.

(d) ∀ε, ∃δ : R(ε, δ).

Now consider a function f . The continuity of f : A→ R at x0 can be written as the

following logical statement:

P (δ, x) =⇒ Q(ε, x)

where P (δ, x) :

Q(ε, x) :

Negating the above statement, we find the following.

Lemma 1.5. A function f : A→ R is said to be discontinuous at x0 ∈ A if
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Let’s try to interpret this result graphically. The Lemma simply says that a function

is discontinuous at x0 if, in an arbitrary neighbourhood of x0, we can find an x whose

image ‘jumps’ outside the ε neighbourhood of f(x0).

Note that the ordering of the logical quantifiers means that the jump distance ε is

fixed for all values of δ. In other words, no matter how closely you zoom into x0, the

function value always jumps by a distance of at least ε.

Example 6. Prove that the step function f : R→ R defined by

f(x) =

0 for x ≤ 0,

1 for x > 0.

is discontinuous at x = 0.
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For this example you will need to recall some results from Analysis I. In the Com-

pleteness chapter, you proved that between any two distinct real numbers, one can find

(infinitely many) rational and irrational numbers.

Example 7. Prove that the Dirichlet function f : R→ R defined by

f(x) =

1 for x ∈ Q,

0 for x 6∈ Q.

is discontinuous at all x0 ∈ R.

1.4.2 Method II: The sequential criterion

This technique to prove discontinuity is based on the following theorem.

Theorem 1.6. (Sequential criterion for continuity). A function f : A→ R is contin-

uous at x = c ∈ A if and only if, for every sequence (xn) in A converging to c, we

have .

To prove that a function is discontinuous at x = c, we just need to produce a

sequence (xn) such that xn → c but f(xn) 6→ f(c). The theorem implies that f cannot

be continuous.

Can you see why we can’t easily use the sequential criterion to prove that a function

is continuous (rather than discontinuous)?

We will prove the “only if” part of the Theorem (the “if” part is in this week’s Quiz).
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x

Example 8. Redo Example (6) using the sequential criterion

Example 9. Redo Example (7) using the sequential criterion



1.5. TRIGONOMETRIC FUNCTIONS 17

1.5 Trigonometric functions

Finally we consider why trigonometric functions are continuous.

Lemma 1.7. If x ∈ (0, π/2), we have

sinx < x.

Proof : Consider a unit circle in which a sector subtends an angle x radian as shown in

the figure below.

For the case x ∈ (−π/2, 0), because both x and sinx are odd, the above Lemma

implies | sinx| < |x|. Using the periodicity of sine, we can extend the Lemma to x ∈ R.

Corollary. ∀x ∈ R, | sinx| ≤ |x|.
Perhaps we can see this more clearly by sketching some graphs (but I encourage you to

try writing a rigorous proof).

Now we can prove the the sine function is continuous at every point on R. The proof

we will study relies on a well-known sum-to-product formula (which you should be able

to derive): ∀α, β ∈ R,

sinα− sin β = 2 cos

(
α + β

2

)
sin

(
α− β

2

)
.
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Theorem 1.8. The function f(x) = sin x is continuous at every x ∈ R.

Example 10. Deduce that the function f(x) = cos2(3− 4x) is continuous at all x ∈ R.

Some final remarks.

• Since cosx = sin(π/2−x) and tanx = sinx/ cosx, the cosine and tangent functions

are continuous (where defined), thanks to the algebra of continuous functions. We

will deal with the continuity of the exponential and log later on when we study

power series.

• This chapter establishes rigorously the meaning of continuity at a point. Next, we

will study special properties of functions that are continuous on an interval.
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Interlude: open and closed sets

Before we begin the next chapter, we need to understand precisely what closed and open

sets are. You will meet these concepts again when you study metric spaces next year.

Definition. A set A ⊆ R is said to be open if

In other words, a set A is open if at every point in A, we can find a neighbourhood

which is contained in A.

Definition. A set A ⊆ R is closed if .

Likewise, ifA is open, it follows that R\A is closed. In other words, the

of an open set is closed, and vice versa. You should try to prove this using sets and logic

from Foundations.

Warning: A set can be open, closed, both or neither. A set which is not open is not

necessarily closed!

Example 11. Prove that the interval (a, b) is open.

Example 12. Prove that (a, b] is not open.

Example 13. Prove that R and ∅ are both open and closed.
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Example 14. If A and B are both open, show that A ∩B and A ∪B are open.

You can show (say, by induction) that any finite number of intersections/unions of

open sets is still open. In fact, the union of countably infinite number of open sets is

still open. However, the intersection of infinitely many sets is not necessarily open. Try

to think of an example.

Corollary. If A and B are closed, show that A ∩B and A ∪B are closed.

Example 15. Prove that [a, b] is closed.
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CONTINUITY ON AN INTERVAL

We now discuss what it means for a function to be continuous over an interval rather than

a point. In particular, we will study special properties of functions that are continuous

on closed, bounded intervals.

Example 1. Give an example of a function which is (intuitively) continuous on an

interval I, but not outside I, where (a) I = [−1, 1], (b) I = (−1, 1).

Does the ε-δ definition make sense at x = ±1 for Example (a)?

We see that the ε-δ definition can still be used even at the endpoints of the closed,

bounded interval [a, b].

21
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Here is a useful result that we will need in this chapter. Study the proof in the Quiz.

Lemma 2.1. (Sign-preservation lemma). Suppose a function f : A→ R is continuous

at x = x0.

• If f(x0) > 0 then ∃δ > 0 such that ∀x ∈ A,

• If f(x0) < 0 then ∃δ > 0 such that ∀x ∈ A,

Proof :

In other words, if f is continuous at a point x0, we can find an interval containing x0

in which the sign of f(x) is fixed.

Question. Suppose f is continuous on [0, 2]. What can we deduce from the sign-

preservation lemma if each of the following holds? (a) f(1) < 0, (b) f(2) > 0.

2.1 The Intermediate-Value Theorem (IVT)

Theorem 2.2. (Almost the IVT but not quite) Let f be a function which is continuous

on [a, b]. If f(a) < 0 and f(b) > 0, then there exists c ∈ (a, b) such that .

It’s helpful to use sketches to help understand what the theorem says, and to make

sense of the steps in the following proof.
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Proof : Consider the set

S = {x ∈ [a, b] : f(x) ≤ 0}.

We claim that S is a non-empty subset of R which is bounded above. This is because:

• ∈ S (non-empty)

• ∀x ∈ S, x ≤ (bounded above)

The property of R implies that S has a ,

which we will call c. Note also that c ∈ [a, b] (why?)

The Law states that only one of the following is true: f(c) > 0,

f(c) < 0, or f(c) = 0. We argue that the first two cases lead to a contradiction.

Case I: Suppose f(c) > 0. Clearly c 6= a since f(a) < 0, which means c ∈ (a, b] (it’s

still possible that c = b).

Since f is continuous at c, the sign-preservation lemma implies that ∃δ > 0 such that

On the other hand, since c is the least upper bound of S, c− δ is not an upper-bound,

and thus ∃x ∈ S such that

c− δ < x ≤ c.

In other words, ∃x . A contradiction.

Case II:

In particular, f(c+ δ/2) < 0, meaning that c+ δ/2 is a member of S. Since c is an

upper bound of S,

≤

This contradicts the fact that .

Therefore, we must have f(c) = 0. This clearly rules out both c = a and c = b, and

so c ∈ (a, b).
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Theorem 2.3. (Intermediate-Value Theorem) Let g be a function which is continuous

on [a, b]. If v is a value strictly between g(a) and g(b), then there exists c ∈ (a, b) such

that .

Proof. If g(a) < v < g(b), apply Theorem 2.2 to the function f(x) ≡ g(x)− v.

If g(b) < v < g(a), apply Theorem 2.2 to the function f(x) ≡ .

Here’s an easy way to remember the IVT: A continuous function g on [a, b] takes

between g(a) and g(b).

One of the most useful applications of the IVT is to prove that an equation (containing

continuous functions) has a solution in a certain closed interval.

Example 2. Does the polynomial g(x) = x6 + 11x+ 7 have any real roots?

Example 3. Study what happens when we try to apply the IVT to f : R→ R where

f(x) =

−1 if x < 0,

1 if x ≥ 0.

Example 4. Does the equation 2 sinx = x2 − 1 have any solutions?
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Some remarks on the IVT.

• One the most important applications of the IVT is root finding. One such method

(the bisection method) is discussed in the Quiz.

• A fun application of the IVT is that you can sometimes ‘cure’ a wobbly table

simply by rotating it. See: https://www.youtube.com/watch?v=OuF-WB7mD6k.

2.2 The Boundedness Theorem

The following definition of boundedness is very similar to that of a bounded sequence

from Analysis I.

Definition. A function f : A→ R is said to be bounded on A if

Definition. A function f : A→ R is said to be unbounded on A if

Example 5. Determine whether the following functions are bounded or unbounded on

the interval (0, 1). a) f(x) = sin(x+ 5), b) f(x) = 1/x.

Can you think of a continuous function on a closed bounded interval which is un-

bounded? We will now prove that there is no such function. The proof requires these

results from Analysis I.

Lemma 2.4. Every convergent sequence of real numbers is bounded.

Lemma 2.5. If (xn) is a convergent sequence and a ≤ xn ≤ b for all n ∈ N, then

https://www.youtube.com/watch?v=OuF-WB7mD6k
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Theorem 2.6. (Boundedness Theorem) Let I be a closed bounded interval [a, b]. If

f : I → R is a function which is continuous on I, then .

Proof. Suppose f is not bounded on I (and let’s work towards a contradiction).

Since f is not bounded on I, for every n ∈ N, ∃xn ∈ I such that .

Consider the sequence (xn). Observe that (xn) is a bounded sequence (since each

xn ∈ [a, b], a bounded interval). By the Theorem, ∃ a

subsequence (xni
) of (xn) that converges to a number x. By lemma 2.5, .

Since f is continuous at x, f(xni
) converges to f(x) by the .

Lemma 2.4 implies that the sequence (f(xni
)) is .

But this contradicts the fact that the sequence (f(xni
)) is unbounded, because

It is important to note that all the assumptions are essential to make the Boundedness

Theorem work, namely:

1) I must be closed. 2) I must be bounded. 3) f must be continuous on I.

Question. Think of an unbounded function on I (if any) when each of the above

conditions is not satisfied.

Example 6. Let f : [a, b] → R be a function which is continuous on [a, b]. Are the

following functions bounded on [a, b]?

a) g(x) = f(x) + 1, b) h(x) = f(x+ 1)

The Boundedness Theorem can be made even more precise by the following Theorem.
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2.3 The Extreme-Value Theorem (EVT)

Definition. The function f : A → R has an on A if there

exists a point x∗ ∈ A such that, for all x ∈ A, f(x∗) ≥ f(x).

We call x∗ an absolute maximum of f in A.

Definition. The function f : A→ R has an absolute minimum on A if

Definition. An absolute maximum or minimum is also called an absolute extremum.

Example 7. Determine whether the function defined by f(x) = 1/x has an absolute

extremum on the following interval. a) [1, 2], b) (0, 1).

Theorem 2.7. (Extreme-Value Theorem) Let f : I → R be a function which is continuous

on a closed bounded interval I. Then f has an absolute maximum and an absolute

minimum on I.

The proof has the same flavours as that of the IVT and the Boundedness Theorem.

Proof. Consider the image of I under f :

f(I) =

The Boundedness Theorem states that f(I) is a bounded subset of R. Clearly f(I) is

also non-empty, so the of R implies that f(I) has a supremum

and an infimum. Let’s call them:

s∗ = sup f(I) and

First, we wish to find x∗ ∈ I such that s∗ = .
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Since s∗ is the least upper bound of f(I), the number s∗ − 1/n (for all n ∈ N) is not

an upper bound of f(I), meaning that

(∗)

The sequence (xn) is bounded (because I is bounded), and by the Bolzano-Weierstrass

theorem, ∃ a subsequence (xni
) converging to some number x∗. By Lemma 2.5, .

Since f is continuous on I, the sequential criterion implies that .

From (∗), we also deduce that for all i ∈ N,

s∗ − 1

ni
< f(xni

) ≤ s∗

Now take the limit as i→∞, the implies that

In other words, x∗ is the absolute maximum point of f on I. The existence of the absolute

minimum point x∗ can be similarly proved. (Alternatively, we could also apply what we

proved to find the absolute maximum point of the function g = −f .)

The EVT is generally useful as a bounding tool when we need a quick upper or lower

bound for continuous functions on a closed bounded interval.

Example 8. Let f : [a, b]→ R be continuous on [a, b] with f(x) > 0 for all x ∈ [a, b].

Prove that there exists a constant α > 0 such that f(x) ≥ α for all x ∈ [a, b].
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LIMITS

3.1 Limits of functions

In Analysis I, we studied what it means precisely when we take a limit of a sequence.

The meaning of the expression lim
n→∞

xn = x was made precise using N and ε. In this

Chapter, we will study limits of functions and see what lim
x→c

f(x) = L means precisely.

Many key concepts in analysis can be expressed in terms of limits, including continuity

(Thm 3.1), differentiation (Ch. 5) and integration (Analysis III ).

Definition. Let c ∈ (a, b) and f : (a, b) \ {c} → R. We write:

lim
x→c

f(x) = L,

if

This should remind us of the definition of continuity at c, but note the following.

• f is not assumed to be continuous anywhere.

• f does not even have to be defined at x = c. This explains the strange domain of

f (although later on we may choose to include c in the domain).

• The limit definition makes no mention of what happens at x = c, but only what

happens close to c. This explains why the δ-neighbourhood of c is .

29



30 CHAPTER 3. LIMITS

If lim
x→c

f(x) = L, we say that “the limit of f at c is L” or “f to L at

c.” Sometimes we also write “ as x→ c”.

The next Theorem shows us that pointwise continuity can be defined in terms of limits.

Theorem 3.1. f : A→ R is continuous at c ∈ A iff lim
x→c

f(x) = f(c).

Proof.

The above theorem means that you can only start substituting values into f(x) when

you are certain that f(x) is continuous at x = c.

Example 1. Evaluate: a) lim
x→0

x sinx b) lim
x→0

√
1 + x−

√
1− x

x
.
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3.2 Sequential criterion for limits

Here is the limit version of Theorem 1.6 (sequential criterion for continuity).

Theorem 3.2. Let c ∈ (a, b) and I = (a, b) \ {c}. Let f : I → R. The following are

equivalent.

(a) lim
x→c

f(x) = L

(b) For every sequence xn ∈ I converging to c, we have .

Proof.

You should certainly compare the above results to Theorem 1.6, which we often used

to prove that a function is discontinuous. Similarly, the limit version of the theorem

gives us a nice way to show that a limit does not exist, i.e. by EITHER

(i) finding a sequence (xn)→ c but , OR,

(ii) finding two sequences (xn) and (yn) converging to c, but .

Method (ii) works because if a limit (for sequences) exists, then it is unique.
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Example 2. Prove that the following limits do not exist. a) lim
x→0

1

x
b) lim

x→0
sin

(
1

x

)
.

[Note: If a limit of f at c does not exist, we can also say that f at c.]

3.3 Limit theorems

Theorems 3.1 and 3.2 show us that results for limits can be cast in terms of either

continuous functions or sequences. Happily, this means that we have (more or less)

already proved all of the following results.

Theorem 3.3. [ ] Let c ∈ (a, b) and I = (a, b) \ {c}.
Let f, g : I → R and α ∈ R. If lim

x→c
f(x) = L and lim

x→c
g(x) = M , then

(a) x

(b) If M 6= 0, then
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The proofs for the algebra of limits are almost identical to those for the algebra of

continuous functions. In addition, we can also construct a similar proof for:

Theorem 3.4. [Limit of composite functions] Let I = (a, b) \ {c} and J = (u, v) \ {d}.
Consider functions f : I → J and g : J → R. If lim

x→c
f(x) = d and lim

y→d
g(y) = M , then

lim
x→c

g ◦ f(x) = .

We often use a special case of the above theorem when g is continuous at d. We can

then ‘pass’ the limit into g, or think of it as a change of variable y = f(x).

Lemma 3.5. [Change of variable] Let I = (a, b) \ {c} and J ⊆ R. Consider functions

f : I → J and g : J → R. If lim
x→c

f(x) = d and g is continuous at d, then

lim
x→c

g ◦ f(x) =

Example 3. Evaluate lim
x→π/2

sin cos(x)

Theorem 3.6. [ ] If f(x) ≤ g(x) ≤ h(x) and

lim
x→c

f(x) = lim
x→c

h(x) = α,

then .

(This follows from the same result for sequences).

Theorem 3.7. [Limits preserve non-strict inequalities ] Let c ∈ (a, b) and I = (a, b) \ {c}.
Let f : I → R. Then, for all x ∈ I,

α ≤ f(x) ≤ β =⇒

(This follows from a similar preservation theorem for sequences).

Here are two interesting applications of the above limit theorems.
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Theorem 3.8. [A very useful limit ] lim
x→0

sinx

x
= 1.

Proof. The geometric proof of lemma (1.7) shows that, for x ∈ (0, π/2), we have:

Occasionally you may come across the function

sincx =

This is a continuous function on R with many real-world applications (e.g. signal

processing). You should definitely be familiar with its graph. You will meet the sinc

function again when you study complex analysis and the Fourier transform.

Example 4. Evaluate lim
x→0

1− cosx

x
.

[Tip: When working with limits, It’s a good habit to indicate where limit theorems have

been used.]
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3.4 One-sided limits

By restricting to one side of the punctured neighbourhood in the definition of limits, we

can define one-sided limits:

Definition. [One-sided limits.]

(a) We say that f : (a, c)→ R has a left-hand limit L at c, and write

lim
x→c−

f(x) = L,

if

(b) We say that f : (c, b)→ R has a right-hand limit M at c, and write

From the definitions, we can immediately deduce the following results:

Lemma 3.9. Let c ∈ (a, b) and f : (a, b) \ {c} → R. Then lim
x→c

f(x) = L iff lim
x→c−

f(x) =

lim
x→c+

f(x) = L.

Theorem 3.10. [Continuity in terms of one-sided limits ] Let c ∈ (a, b) and f : (a, b)→ R.

Then f is continuous at c iff lim
x→c+

f(x) = lim
x→c−

f(x) = f(c)

Example 5. Write down the one-sided limits of the functions at x = N ∈ Z.

a) dxe, b) x− bxc
(You should try to prove these using the definitions.)



36 CHAPTER 3. LIMITS

3.5 Limits at infinity

We are used to saying “1/x tends to 0 as x tends to infinity”, but we can now make this

sentence precise using the language of analysis.

Definition. [Limits as x→ ±∞.]

(a) We say that f : (a,∞)→ R has a limit L as x→∞, and write

lim
x→∞

f(x) = L,

if

(b) We say that f : (−∞, a)→ R has a limit M as x→ −∞, and write

These should remind you of the ε,N definition for the limit of a sequence.

Example 6. Prove, using the definition, that lim
x→∞

1

x
= lim

x→−∞

1

x
= 0.
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It is worth noting that the squeeze theorem still works as x→ ±∞. You can guess

that the proof is very similar to the version for sequences.

Theorem 3.11. [Squeeze theorem - version for limits at ∞]

If f(x) ≤ g(x) ≤ h(x) and lim
x→∞

f(x) = lim
x→∞

h(x) = α, then

3.6 Infinite limits (when functions blow up)

We wish to give precise meaning to statements like “1/x2 blows up at x = 0.”

Strong warning: The limit lim
x→0

1/x2 , but we can still

use the symbol ±∞ to give a sense of the direction in which the function ‘blows up’.

Never treat the symbol ∞ like a number, and always feel nervous about writing it down

at all. Most importantly, never write “ . . . =∞” unless there’s a limit on the LHS.

Definition. [Infinite limits.]

(a) We say that f : (a, b) \ {c} → R tends to ∞ as x→ c and write

lim
x→c

f(x) =∞,

if

(b) We say that f : (a, b) \ {c} → R tends to −∞ as x→ c and write

These definitions should by now feel like a natural way to express the sense of

unboundedness near x = c in the language of analysis.

We can also have one-sided infinite limits. You should try writing down the definitions

of these expressions.

lim
x→c−

f(x) =∞ lim
x→c−

f(x) = −∞ lim
x→c+

f(x) =∞ lim
x→c+

f(x) = −∞
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Finally, we can combine infinite limits with limits at ∞, giving precise meaning to

statements like “f(x) = x tends to ∞ as x→∞.”

Definition. [Infinite limits as x → ∞.] We say that f : (a,∞) → R tends to ∞ as

x→∞, and write

lim
x→∞

f(x) =∞,

if

Example 7. Prove that for any odd integer n ≥ 1, lim
x→∞

xn =∞, and lim
x→−∞

xn = −∞.

3.7 Summary

You must be able to state the definitions of all of the following types of limits.

• Finite limits: lim
x→c

f(x) = L

• One-sided limits: lim
x→c−

f(x) = L,

lim
x→c+

f(x) = L

• Limits at infinity: lim
x→∞

f(x) = L,

lim
x→−∞

f(x) = L

• Infinite limits: lim
x→c

f(x) = ∞,

lim
x→c

f(x) = −∞

• Infinite one-sided limits:

lim
x→c−

f(x) = ∞, lim
x→c−

f(x) = −∞,

lim
x→c+

f(x) =∞, lim
x→c+

f(x) = −∞

• Infinite limits at infinity:

lim
x→∞

f(x) = ∞, lim
x→−∞

f(x) = ∞,

lim
x→∞

f(x) = −∞, lim
x→−∞

f(x) = −∞
x



CHAPTER 4

INVERSE FUNCTIONS

You may remember the inverse function from school as the reflection of the curve y = f(x)

about the line y = x. But at university, we start from definitions and build precise

vocabulary around the idea of inverse functions (without relying on pictures for definition).

You may recall the following definitions from Foundations.

Definition. Consider the function f : A→ B.

• f is injective if

• f is surjective if

• f is bijective if

Definition. If f : A→ B is a bijection, its inverse is defined by

f−1(y) = x if

Definition. Consider the function f : A→ B.

• f(A) is said to be the of A under f (just another way to say that

f(A) is the range of f).

• f−1(B) is said to be the of the set B under f (another way to say

that f−1(B) is the domain of f).

It’s useful to note that f : A→ f(A) is clearly a function.

39
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4.1 Monotone functions

Definition. Consider the function f : A→ B. For all x1, x2 ∈ A,

• f is increasing on A if

• f is strictly increasing on A if

• f is decreasing on A if

• f is strictly decreasing on A if

• f is monotone on A if

• f is strictly monotone on A if

The main goal of this Chapter is to prove the following theorem.

Theorem 4.1. [ ] If f : I → f(I) is a continuous,

strictly monotone function on an interval I, then f−1 : f(I) → I exists, and is also

continuous and strictly monotone (in the same sense as f) on the interval f(I).

This useful theorem allows us to “invert” any continuous functions on an interval over

which it is strictly monotone. This is how we define, for example, the function sin−1.

Here’s a lemma which will be useful in the proof. Study its proof in the Quiz.

Lemma 4.2. [ ] Let I ⊆ R be an interval and let f : I → R
be continuous on I. Then f(I) is also an interval.

Proof:
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Lemma 4.3. If f : [a, b]→ [f(a), f(b)] is a surjective and strictly increasing function on

[a, b], then f is continuous on (a, b).

Proof:
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With slight changes, the proof can be modified to show the following: a) f is in fact

continuous on [a, b], b) f is in fact continuous on any interval I ⊆ R.

Let’s state this generalisation here.

Lemma 4.4. If f : I → f(I) is a strictly increasing function on I (where I and f(I) are

intervals), then f is continuous on I.

Lemma 4.5. If f : I → f(I) is a continuous, strictly increasing function on an interval

I, then f−1 : f(I)→ I exists, and is also strictly increasing on the interval f(I).

Proof:

Theorem (Inverse-function theorem). If f : I → f(I) is a continuous, strictly monotone

function on an interval I, then f−1 : f(I)→ I exists, and is also continuous and strictly

monotone (in the same sense as f) on the interval f(I).

Proof. Consider f : I → f(I), which is a continuous, strictly increasing function. (If f is

strictly decreasing, consider g(x) = instead.)

• Since I is an interval, f(I) is an interval by Lemma .

• f−1 : f(I)→ I exists and is strictly increasing by Lemma .

• Therefore, Lemma applies and thus f−1 is continuous on f(I).
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DIFFERENTIATION

In your previous encounter with calculus, you would have gained dexterity with a variety

of differentiation techniques. However, in Analysis, we will strip everything back to

definitions and build everything up again with a stronger foundation that we have gained

through the previous chapters.

Definition. Let f : (a, b)→ R and let c ∈ (a, b). The of f at c, denoted

f ′(c), is defined as:

=

f is said to be at c if the limit above exists (i.e. is finite).

The derivative can also be written as:

=

In this course, we will primarily regard the derivative as a , as opposed to

a rate of change, or the gradient of a tangent to a curve.

Convention: We will not be using the symbol dy/dx.

Example 1. Find the derivative of f(x) = x2 at x = c.

43
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It is often convenient to regard the derivative as a function of x in its own right,

where the domain of f ′ is a subset of the domain of f (i.e. wherever f is differentiable).

Thus, in the previous example, we can also say that the derivative of f is a function

f ′ : R→ R where f ′(x) = 2x.

Example 2. Find the derivative of the function f(x) = sin x defined on R, at x = c.

Theorem 5.1. If f : (a, b)→ R is differentiable at c ∈ (a, b), then f is continuous at c.

Proof:

Example 3. Investigate the differentiability of the function f(x) =

1 if x ∈ Q

0 otherwise
.
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Using one-sided limits, we can easily determine whether a function is differentiable or

not at x = c. Using Lemma 3.9, we deduce that a function f is differentiable at c iff

where F (x) ≡ f(x)− f(c)

x− c
.

Example 4. Demonstrate, using the function f(x) = |x| defined on R, that the converse

of Theorem 5.1 does not hold.

Question. Is there a function which is continuous everywhere on R, but is not differen-

tiable anywhere?

5.1 Algebra of derivatives

We now prove familiar rules of differentiation. You can already guess that many results

for the algebra of derivatives will follow from the .

Theorem 5.2. Suppose that f, g : (a, b)→ R are differentiable at c ∈ (a, b), we have:

(a) If α ∈ R, then f + αg is differentiable at c, and

(b) ( ) The function fg is differentiable at c, and

(c) If g(c) 6= 0, the function 1/g is differentiable at c, and

(d) ( ) If g(c) 6= 0, the function f/g is differentiable at c, and
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The results of the algebra of derivatives can be extended to calculate the derivative

of, say, the function f1f2 . . . fn using .

Proof of the algebra of derivatives :
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5.2 Carathéodory’s Theorem

Here is an interesting alternative criterion for differentiability. This theorem is named

after the Greek mathematician, Constantin Carathéodory (1873-1950) who published

influential works on analysis and mathematical physics.

Theorem 5.3. [Carathéodory’s Theorem] Let f : I → R be defined over an interval I,

and let c ∈ I, then f is differentiable at c iff there exists a function ϕ : I → R that is

at c and satisfies the equation

= (∗)

In addition, we have .

Proof:

Example 5. For any n ∈ N, prove that the function f : R→ R defined by f(x) = xn is

differentiable at any c ∈ R. Hence find f ′(c).
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The previous example, combined with the algebra of derivatives, immediately gives

us the following useful result.

Corollary. All polynomials are differentiable on R.

Example 6. Use Carathéodory’s Theorem to prove the Product Rule.

(Compare with our previous proof using limits, which proof do you prefer?)

Theorem 5.4. [ ] Let g : I → R and f : J → R, where I and J are

intervals, and f(J) ⊆ I. Let c ∈ J . Suppose f is differentiable at c and g is differentiable

at d = f(c), then the composition g ◦ f is differentiable at c with

=

Proof: Study the proof in the Quiz (based on Carathéodory’s Theorem) and write your

own version on a separate page.
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Theorem 5.5. [Derivative of inverse functions ] Let f : I → R be a continuous, strictly

monotone function on an interval I. Let f−1 : f(I)→ R be the inverse function of f . If

f is differentiable at c, and f ′(c) 6= 0, then f−1 is differentiable at d = f(c), with

(f−1)′(d) =

Proof:

Note: some books call the above Theorem the ‘Inverse Function Theorem’ (IFT). Indeed,

in future analysis courses, you will study a more general version of the IFT (in Rn) that

resembles Theorem 5.5. But for now, in this course the IFT will refer to Theorem 4.5.

Example 7. Find the derivative of the inverse sine function.
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Lemma 5.6. The function f : (0,∞)→ R, where

f(x) = xr, where r is a positive rational number, (?)

is differentiable at any x > 0, with f ′(x) = rxr−1.

[Do this in 3 steps: (1) r = n ∈ N, (2) r = 1/n, (n ∈ N), (3) r = m/n, (m,n ∈ N).]

Reminder: We don’t know what an irrational exponent like x
√
2 means at this point!
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Here are some miscellaneous definitions regarding the concept of differentiability.

(a) We have so far been discussing differentiability at a point. If a function f is differ-

entiable at all points in an open interval (a, b) then we say that f is differentiable

.

(b) The definition of the derivative at the beginning of this chapter can be extended to

the endpoints of a closed bounded interval. For example, the function f : [a, b]→ R
is differentiable at a if

(c) If f is differentiable on (a, b) and f ′ is itself differentiable at c ∈ (a, b), we can write

the derivative of f ′ at c as

=

We call this the of f at c.

(d) If a function is sufficiently ‘nice’, we can carry on differentiating to obtain the n-th

derivative of f at c, denoted .

(e) A derivative of a function on an interval I need not be continuous on I, but it

would be a nice bonus if it is!

If f ′ is continuous on I, f is said to be .

If f (n) is continuous on I, f is said to be n-times continuously differentiable.

(f) The symbol is used to denote the set of all functions that are n-times

continuously differentiable on the interval I. For instance, the following expressions

are all equivalent.

• f is continuously differentiable on I.

•

•

In this terminology, another way to say “f is continuous on I” is .

(g) Finally, the ultimate ‘nice’ function: If f is n-times continuously differentiable on

I for all n ∈ N, then we say that f is , or f ∈ .

Question. Think of a function defined on R which is a) C1 but not C2, b) C∞.



52 CHAPTER 5. DIFFERENTIATION

5.3 Local-Extremum Theorem

The next application of the derivative is related to something you know from school: The

derivative vanishes at ‘turning points’. But how do we prove this without pictures?

Definition. Let I be an interval. The point c ∈ I is said to be an interior point of I if

Definition. Let I be an interval and let f : I → R. Let c be an interior point of I.

• f has a local minimum at c if

• f has a local maximum at c if

• A local is either a local maximum or a local minimum.

Theorem 5.7. [Local-extremum theorem] Let c be an interior point of the interval I.

Suppose f : I → R has a local extremum at c. If f ′(c) exists, then f ′(c) = 0.

Proof:

Corollary. Let c be an interior point of the interval I. Suppose f : I → R has a local

extremum at c, then either f ′(c) = 0 or .
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5.4 The Mean-Value Theorem (MVT)

We now study an important application of the derivative. We will show that a vibrating

string fixed at both ends attains an extremum somewhere. This theorem is named after

Michel Rolle (1652-1719), a French self-taught mathematician who also published the

technique known today as Gaussian elimination.

Theorem 5.8. [Rolle’s Theorem] If f : [a, b]→ R is continuous on [a, b] and differentiable

on (a, b), with f(a) = f(b) = 0, then

Proof: [In some books, Rolle’s Theorem only requires f(a) = f(b) (possibly nonzero).]

Theorem 5.9. [Mean-Value Theorem (MVT)] If f : [a, b] → R is continuous on [a, b]

and differentiable on (a, b), then ∃c ∈ (a, b) such that

= (∗)

Proof:



54 CHAPTER 5. DIFFERENTIATION

Here are some interesting applications of the MVT (more in Assignment 4 and in the

Quiz). How you would have proved the following Lemma back in school?

Lemma 5.10. Prove that if f : [a, b]→ R is continuous on [a, b], and that f ′(x) = 0 for

all x ∈ (a, b), then f = on [a, b].

Lemma 5.11. [ ] If f : [a, b]→ R is continuous on [a, b]

and differentiable on (a, b), then f is increasing on [a, b] iff f ′(x) ≥ 0 for all x ∈ (a, b)
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The results from the Lemma (5.11) need to be applied with extreme caution.

Example 8. True or false?

(a) Let f : [a, b]→ R be differentiable on the interval (a, b). If f is strictly increasing

on [a, b] then f ′(x) > 0 for all x ∈ (a, b).

(b) If f is differentiable at c and f ′(c) > 0, then there exists a neighbourhood of c in

which f is strictly increasing.

Example 9. Use the MVT to prove the inequality tanx > x for all x ∈ (0, π/2). State

all assumptions clearly.
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Next, we prove a familiar result about using the second derivative to classify the

nature of a local extremum. But we will need this:

Lemma 5.12. [Sign-Preservation Lemma for limits ] Let g : (a, b)→ R and c ∈ (a, b). If

lim
x→c

g(x) > 0, then ∃δ > 0 such that

Theorem 5.13. [ ] Let f : (a, b)→ R be differentiable

in a neighbourhood of c ∈ (a, b), with f ′(c) = 0. Suppose that f ′ is differentiable at c.

(a) If f ′′(c) < 0 then f has a local at c.

(b) If f ′′(c) > 0 then f has a local at c,

Example 10. Does the converse to the above Theorem hold?
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Here is an alternative version of the MVT, involving 2 functions at once, which will

be useful in the next section. Augustin-Louis Cauchy (1789-1857) was a prolific French

mathematician and one of the founding fathers of Analysis.

Theorem 5.14. [Cauchy Mean-Value Theorem (CMVT)]: Let f and g be continuous

on [a, b] and differentiable on (a, b), and assume that g′(x) 6= 0 for all x ∈ (a, b). Then

there exists c ∈ (a, b) such that

=

(Note: By putting g(x) = x, we see that we recover the .)

Proof: Define a function h : [a, b]→ R which is continuous on [a, b] and differentiable on

(a, b) as:

h(x) = f(x)− λg(x),

where the constant λ is to be determined. As in the proof of the MVT, we require:

5.5 L’Hôpital’s Rules

We can now expand our limit-calculation repertoire by combining limits with differentia-

tion. In particular, we are interested in limits of the form lim
x→c

f(x)

g(x)
where both f and g

approach 0 or ∞. These theorems were discovered by Johann Bernoulli (1667-1748), a

Swiss mathematician considered one of the founders of Calculus. Bernoulli was the tutor

of the Marquis de L’Hôpital, who published a book based on Bernoulli’s lessons.
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5.5.1 Indeterminate forms

If lim
x→c

f(x) = lim
x→c

g(x) = 0 or ∞, then lim
x→c

f(x)

g(x)
is said to be in the indeterminate form:

An indeterminate form can turn out to be a real number or ±∞. Can you think of

examples of f(x) and g(x) for these cases?

Very strong warning: The only time when you get to write these absolutely crazy

notations is in connection with limits. Do not use these symbols in other contexts unless

explicitly advised by your lecturers.

5.5.2 L’Hôpital’s Rule 0

We now show that the limit of the form lim
x→c

f(x)

g(x)
is naturally connected to derivatives.

Theorem 5.15. [L’Hôpital’s Rule 0 ]: Let f and g be defined on I ⊃ [a, b]. Let

f(a) = g(a) = 0 and g(x) 6= 0 for x ∈ (a, b). If f and g are differentiable at a with

g′(a) 6= 0, then

=

Proof:

Example 11. Calculate lim
x→0

sinx

x
.



5.5. L’HÔPITAL’S RULES 59

5.5.3 L’Hôpital’s Rule 1

The next version allows us to calculate lim
x→a+

f(x)

g(x)
in the indeterminate form

0

0
.

Theorem 5.16. [L’Hôpital’s Rule 1 ]: Let f and g be differentiable on (a, b) with

g′(x) 6= 0 for all x ∈ (a, b). Suppose that lim
x→a+

f(x) = lim
x→a+

g(x) = 0, then,

lim
x→a+

f ′(x)

g′(x)
= L =⇒

where L may be a real number or ±∞.

Proof:
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Note the logic of the theorem: If lim f ′/g′ exists, then it equals lim f/g. However, in

our working, I recommend the following steps:

Step 0) Define f and g and pick the interval on which g′(x) 6= 0.

Step 1) Check if lim (f/g) is in an indeterminate form.

Step 2) Try calculating lim (f ′/g′).

Step 3) If Step 2 gives L, then feed it back to lim (f/g) “by L’Hôpital’s Rule”.

Example 12. Calculate: a) lim
x→0+

sinx√
x
, b) lim

x→0+

1− cosx

x3
.

5.5.4 L’Hôpital’s Rule 2

Next we deal with the indeterminate form
∞
∞
.

Theorem 5.17. [L’Hôpital’s Rule 2 ]: Let f and g be differentiable on (a, b) with

g′(x) 6= 0 for all x ∈ (a, b). Suppose that lim
x→a+

f(x) = lim
x→a+

g(x) = ±∞, then,

lim
x→a+

f ′(x)

g′(x)
= L =⇒

where L may be a real number or ±∞.
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Proof : Choose any x, y ∈ (a, b) such that x < y. We know that f and g are continuous

on [x, y] and differentiable on (x, y).

We also know that, ∀t ∈ (x, y), g′(t) . By the , ∃c ∈ (x, y) such

that
f ′(c)

g′(c)
=

Now let’s express f(x)/g(x) as terms which we can control individually.

f(x)

g(x)
=
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Here are some extensions of our results.

• Two-sided extension: An almost identical working gives L’Hôpital’s Rules 1,2

for left-handed limits. Combining the one-sided versions gives the two-sided version

of L’Hôpital’s Rule.

Theorem 5.18. [Two-sided L’Hôpital’s Rule]:. Let f and g be differentiable on (a, b)\{c}
with g′(x) 6= 0 for all x ∈ (a, b) \ {c}. Suppose that lim

x→c
f(x) = lim

x→c
g(x) = 0 or ±∞,

then,

lim
x→c

f ′(x)

g′(x)
= L =⇒

where L may be a real number or ±∞.

• Limit at ∞ extension: Some adjustment of the proofs will allow us to establish

L’Hôpital’s Rules 1,2 for lim
x→±∞

f ′(x)

g′(x)
. [by working in the bounded interval (α, β) ⊂

(a, b).] This results in further variations of the one-sided L’Hôpital’s Rules. For

example, taking b→∞, we have

Theorem 5.19. [L’Hôpital’s Rule for limits at ∞]:. Let f and g be differentiable on

(a,∞) with g′(x) 6= 0 for all x ∈ (a,∞). Suppose that lim
x→∞

f(x) = lim
x→∞

g(x) = 0 or ±∞,

then,

lim
x→∞

f ′(x)

g′(x)
= L =⇒

where L may be a real number or ±∞.

Example 13. Evaluate the following limits.

a) lim
x→∞

x2

x2 + 3x+ 1
b) lim

x→∞

x− sinx

2x+ sinx
.
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TAYLOR’S THEOREM

You may be familiar with the approximation of a function f(x) by a polynomial (so-called

Taylor or Maclaurin series). You may remember this kind of series:

f(x) = f(x0) + (x− x0) + (x− x0)2 + . . . (x− x0)n + . . .

At university, we are not only concerned with what the series looks like, but also the

error term (the ‘remainder ’) in the above expansion, and the convergence of the series

(given what we know from Analysis I). We will be occupied with these questions for the

rest of the course. Along the way, we will be reunited with our old friends: exp and log.

Theorem 6.1. [ ] Let I = [a, b] and n = 0, 1, 2 . . .. Suppose

that f ∈ Cn(I) and that f is (n + 1)-times differentiable on (a, b). If x0 ∈ I, then,

∀x ∈ I \ {x0}, ∃c between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n +Rn

where Rn =

Note that when x = x0, the equality is trivial.

Although the theorem bears the name of English mathematician Brook Taylor (1685-

1731) who studied the polynomial expansion, it was Joseph-Louis Lagrange (1736-1813)

who provided the remainder term. Rn is often called the

63
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Proof: We are given x, x0 ∈ I = [a, b] with x 6= x0. let J denote the closed interval [x, x0]

or [x0, x] (whichever makes sense). Clearly J ⊆ I. Define the function P : J → R by:

P (t) = f(t) + (x− t)f ′(t) +
(x− t)2

2
f ′′(t) + . . .+

(x− t)n

n!
f (n)(t).

Since f ∈ Cn(J), P is continuous on J and differentiable on (x, x0) or (x0, x) [why?].

Observe that the values of P and f agree at the endpoint t = . The derivative P ′(t)

is given by:

Let’s define R : J → R by

R(t) = f(x)− P (t).

We note that when t = , we obtain the expansion in the Theorem, with the remainder

term given by (to be determined). Also, note that R′(t) =

Define G : J → R by:

G(t) = R(t)−
(
x− t
x− x0

)n+1

R(x0).

Clearly, G is also continuous on J and differentiable on (x, x0) or (x0, x). The derivative

G′(t) is given by:

We claim that the remainder term can be obtained by applying Rolle’s Theorem to G on

J .
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Example 1. Use Taylor’s Theorem with n = 2 and x0 = 0 to approximate 3
√

1 + x where

x > −1. Hence give a numerical approximation of 3
√

1.3. How accurate is this estimate?

Example 2. Prove that cosx ≥ 1− 1
2
x2 for all x ∈ R.
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6.1 Taylor series

Definition. Let f ∈ C∞([a, b]). The Taylor series (or Taylor expansion) of f about a

point x0 ∈ [a, b] is the infinite series∑
Warning: Beware of the difference between Taylor series and Taylor’s Theorem.

We have not said that f(x) equals the above series. We do not even know if the

series converges. The convergence of Taylor series is a delicate question that we will keep

investigating for the rest of the course. The series may converge for some values of x but

not others. Even so, the series may converge to something that is not f !

Definition. We write

∞∑
k=0

f (k)(x0)

k!
(x− x0)k,

if and only if the sequence of remainder terms Rn(x) converges to 0 for each x in the

open interval (a, b).

Note: We usually test the convergence at the boundary points a, b separately.

Lemma 6.2. [ ] Let (an) be a sequence such that an > 0. Suppose

0 < l < 1 and an+1/an ≤ l eventually, then .

Lemma 6.3. Let I = (a, b) and suppose f ∈ C∞(I). Suppose that there exists a

constant M such that for all x ∈ I and all k ∈ N, |f (k)(x)| ≤M , then the Taylor series

of f about x0 ∈ I converges to f(x) for all x ∈ I.
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Corollary. ∀x, x0 ∈ R, the Taylor series for sinx and cosx converge to those functions.

It’s worth remembering the expressions for these series around x0 = 0.

6.2 The exponential function

Definition. The exponential function, E : R→ R, is a differentiable function such that

∀x ∈ R, E ′(x) = E(x), with E(0) = 1.

Suppose for now that E(x) exists. If so, E ∈ C∞(R) by induction.Taylor’s Theorem

then tells us that, around x0 = 0,

We now show that for each x ∈ R, Rn → 0 as n→∞.

Thus, for all x ∈ R the Taylor series of E(x) converges to E(x), and we can write

E(x) =
∑

We can’t yet verify that E(x) in this form satisfies E ′(x) = E(x) because we still

don’t know how to differentiate the series term by term. We’ll come back to this point.
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Here are some familiar properties of the exponential function that follow from the

definition. Properties (a) and (f) are proved in the Quiz.

(a) E is unique.

(b) E(x+ y) = E(x)E(y) for all x, y ∈ R.

(c) E(x) > 0 for all x ∈ R

(d) E is strictly increasing on R

(e) lim
x→∞

E(x) =∞, lim
x→−∞

E(x) = 0,

and E(R) = (0,∞).

(f) E(r) = er for all r ∈ Q, where the

constant e ≡ E(1).

x
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6.3 The logarithm

Since E : R → E(R) = is continuous and strictly increasing on R, the

Theorem tells us that

Definition. The logarithm function, L : (0,∞) → R, (also called, natural logarithm,

‘natural log ’, or simply ‘log ’) is defined as the inverse function of the exponential function.

Here are some other familiar properties of the log that follow from this definition.

(a) L(1) = 0 and L(e) = 1.

(b) L′(x) = 1/x for x ∈ (0,∞).

(c) L(xy) = L(x) + L(y) ,∀x, y ∈ (0,∞).

(d) L(xr) = rL(x) for all x > 0 and

r ∈ Q.

(e) lim
x→∞

L(x) =∞ and lim
x→0+

L(x) = −∞.

x
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Definition. [The power function] If α ∈ R and x > 0, the number xα is defined to be

xα =

The power function allows us to extend property (f) of the exponential, and we can now

write E(x) as ex for any x ∈ R. Similarly, property (d) of the log now holds for all real

exponents. With this definition, it is easy show that xα can be differentiated using the

same rule as in Lemma 5.6.

New notation. From now on we will denote the exponential and the log as follows:

E(x) ≡ ex, L(x) ≡ lnx.

Example 3. Apply Taylor’s Theorem to f(x) = ln(1 + x) around x0 = 0. Show that

the Taylor series converges1 to f when x ∈ (0, 1). What happens at x = 1?

1In fact, the the Taylor series also converges to ln(1 + x) when −1 < x < 0, but our proof here won’t
work (why?). What is needed is a different technique (for example, integrating another Taylor series,
which you will get to do in the next analysis courses).
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6.4 Interlude: limsup and liminf

Consider the sequence xn = (−1)n. Clearly lim
n→∞

xn does not exist. However, consider

the sequence

Sn = sup
i≥n

xi.

We note that Sn converges with lim
n→∞

Sn = . Similarly, we could define:

In = inf
i≥n

xi =

lim
n→∞

In =

Definition. Let (xn) be a sequence of real numbers.

(a) The of (xn), denoted lim sup
n→∞

xn or lim
n→∞

xn is defined

as

(b) The of (xn), denoted lim inf
n→∞

xn or lim
n→∞

xn is defined

as

Example 4. Write down limsup and liminf for the following sequences:

xn =

5−n if n is odd

−1/n if n is even
yn =

2n if n is odd

1 if n is even
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Here are some observations about limsup and liminf (proofs needed).

• If (xn) is bounded, (Sn) is sequence.

• If lim
n→∞

xn =∞ then lim sup
n→∞

xn = .

• lim
n→∞

xn = L <∞ ⇐⇒ lim sup
n→∞

xn = lim inf
n→∞

xn = <∞.

Here is a useful series-convergence test to add to your list of tests from Analysis I.

Theorem 6.4. [Cauchy’s Root Test ] Consider the series
∞∑
n=1

xn. Let r = lim sup
n→∞

|xn|1/n.

(a) If r < 1, then
∞∑
n=1

xn is convergent,

(b) If r > 1, then
∞∑
n=1

xn is divergent.

x
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6.5 Radius of convergence

Definition. A power series around x = x0 is the infinite series of the form
∑
n=N0

We are interested in the question of convergence of power series, so the value of N0 is

irrelevant (sometimes we will simply denote the series as
∑
anx

n). Also, WLOG we can

concentrate on the power series around x0 = 0.

Analysis I has already provided us with several ‘tests’ to determine whether a series

converges or not. Please revise them. Here is an old friend.

Theorem 6.5. [Ratio Test ] Suppose Tn 6= 0 eventually, and = L.

If L < 1, then
∑
Tn converges. If L > 1, then

∑
Tn diverges.

Example 5. Apply the Ratio Test to the following series and deduce the values of x for

which each series converges or diverges.

a)
∞∑
n=0

n!xn b)
∞∑
n=0

(n− 10)xn c)
∞∑
n=0

xn

n!

Convergence tests tell us that about the set A such that “if x ∈ A, then the series

converges”. But the tests do not give us all the values of x for which a series converges,

as the next example shows. Convergence at the ‘boundary’ needs to be tested separately.

Example 6. Applying the Ratio Test to the following series shows that they converge if

and diverge if . What happens at x = ±1?

a)
∞∑
n=0

xn b)
∞∑
n=1

xn

n
c)

∞∑
n=1

xn

n2
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Definition. Suppose the power series
∑
anx

n converges if |x| < R and diverges if

|x| > R. We call R the of the power series.

6.6 Cauchy-Hadamard Theorem

The next theorem is one the most powerful tools with which we can study the convergence

of power series. It is named after our old friend Cauchy and the French mathematician

Jacques Hadamard (1865-1963), whom you may hear about again when you study the

Prime-Number Theorem.

Theorem 6.6. [Cauchy-Hadamard Theorem] Let
∑
anx

n be a power series.

Let ρ = and define R =


1/ρ if 0 < ρ <∞,

0 if ρ =∞,

∞ if ρ = 0.

(a) If 0 < R <∞, then the series converges whenever |x| < R, and diverges whenever

|x| > R.

(b) If R = 0, then the series converges only for x = 0.

(c) If R =∞, then the series converges for all x ∈ R.
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Some remarks about the Cauchy-Hadamard Theorem.

• The theorem tell us that the subset of R on which a power series converges is an

and not any random, fragmented subset.

• The convergence at x = ±R must be tested separately. This explains why, in §6.1,

we studied the convergence of Taylor’s series defined on an open interval (a, b), and

tested the convergence at the endpoints separately.

• The Root Test (and hence the Cauchy-Hadamard Theorem) implies the Ratio Test

(in other words, the Ratio Test is a weaker test2). But it may sometimes be easier

to obtain R from the Ratio Test as we did in Examples 5 and 6. We tend to invoke

the Cauchy-Hadamard theorem when an contains n-th powers, or when an takes

different forms depending on, say, when n is odd or even.

Example 7. Find the radius of convergence of the series
∞∑
n=1

anx
n where:

a) an = 3n b) an =

2n n odd

5n n even
c) an =

1

nn
.

x

2See https://tinyurl.com/4t5v8wut (not examinable).

https://tinyurl.com/4t5v8wut
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6.7 Term-by-term differentiation

Can power series be differentiated? This is not obvious because we are dealing with an

infinite sum. If we could, then that would settle the question of the existence of the

exponential, which we proposed to be the Taylor series

ex =

If permitted, then the differentiated power series looks like:

which is exactly ex as we had hoped! The ability to differentiate power series is extremely

useful in (real and complex) analysis, and it turns out that indeed we can differentiate,

as long as we stay inside the radius of convergence.

Theorem 6.7. [Term-by-Term differentiation] A series
∑
anx

n can be differentiated

term-by-term within its radius of convergence.

We will break up the proof of this epic final theorem into bite-size lemmas.

Lemma 6.8. (a) [Pulling a limit out of a limsup.] If lim
n→∞

xn = x > 0 and lim sup
n→∞

yn =

y, then lim sup
n→∞

(xnyn) = xy.

(b) The series
∞∑
n=1

anx
n and

∞∑
n=1

nanx
n−1 have the same radius of convergence.
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We could repeat the previous proof and obtain the following

Corollary. The following series have the same radius of convergence:

∞∑
n=0

anx
n

∞∑
n=1

nanx
n−1

∑

Proof of Theorem 6.7: Let f : (−R,R) → R and g : (−R,R) → R be defined by the

power series

f(x) =
∞∑
n=0

anx
n, g(x) =

∞∑
n=1

nanx
n−1.

By the previous Corollary, the radii of convergence of both f and g are equal. Call this

radius R.

We want to show that, for all x0 ∈ (−R,R), f ′(x0) = . In terms of limits,

we want to show that

Or, equivalently, that:

The terms in the infinite sums could be rearranged because, within the interval of

convergence (−R,R), the series are convergent, as shown in the

proof of Theorem 6.4. (You may need to look up series rearrangement and Riemann

rearrangement theorem from Analysis I.)
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Lemma 6.9. Let x0 ∈ R and n ∈ N. Then for any x ∈ R with x 6= x0, we have the

estimate ∣∣∣∣xn − xn0x− x0
− nxn−10

∣∣∣∣ ≤ n

2
(n− 1)ρn−2|x− x0|,

where ρ = max(|x0|, |x|).
Proof: Use Taylor’s Theorem to find a linear approximation f(x) = xn around x = x0.

Proof of Theorem 6.7 continued: So far we now have the estimate

∣∣∣∣f(x)− f(x0)

x− x0
− g(x0)

∣∣∣∣ ≤
[
∞∑
n=2

|an|
n

2
(n− 1)ρn−2

]
|x− x0|,

where ρ = max(|x0|, |x|).
From the proof of Cauchy’s Root Test, we showed that a series converges

within its radius of convergence. This means that series
∑
anx

n,
∑
|anxn| and

∑
|ann(n− 1)xn−2|

all converge. And since ρ < R, the series in the square brackets above also converges to

a finite number, say, Ax.

Now take the limit as x → x0 on both sides. Note that Ax converges to a finite

number. We then have:
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Here are some immediate corollaries of the term-by-term differentiation theorem.

(a) The power series
∑
anx

n is continuous on (−R,R).

(b) The power series
∑
anx

n is infinitely differentiable in (−R,R).

These results are very handy when we define functions like the exponential as a power

series - we get continuity and differentiability for free within the interval of convergence.

Finally, we have a lemma which allows us to obtain new power series by differentiation.

Lemma 6.10. [Uniqueness of power series ]

Suppose that, for all x ∈ (−R,R), we have two convergent power series such that
∞∑
n=0

anx
n =

∞∑
n=0

bnx
n, then

[In other words, we can compare coefficients of two power series term-by-term.]

Example 8. Starting from a geometric series, obtain the Taylor series about x0 = 0 for
1

(1− x)2
. Find the radius of convergence.
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Example 9. In this course we have shown that if the sine function is defined geometrically

(via angles), then it is C∞ on R, and its Taylor series is given by

sinx =

(a) Show that we can take the reverse perspective, i.e. if we define the sine function

by the power series above, show that it is C∞ on R.

(b) Define the cosine function as a series and verify that (sin)′ = cos and (cos)′ = − sin

(c) Prove that sin2 x+ cos2 x = 1 for all x ∈ R.

x
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