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These notes accompany the course 32222: Introduction to Numerical Analysis for
second-year undergraduates reading mathematics at Hull.

The main textbook for this course is

Numerical Analysis, Sauer T., 2nd ed., Pearson (2014).

In addition, I recommend the following books.

Numerical Mathematics and Computing, Cheney W. and Kincaid D, 7th ed.,
Cengage Learning (2013).

Numerical Recipes: The Art of Scientific Computing, Press W. H. et. al., 3rd

ed., Cambridge University Press (2007).

These books can all be found in the University Library.

You will also need to use MATLAB on your own computer. Send an email to
help@hull.ac.uk to request the installation link. If you already have MATLAB at
home, update it to the latest version.

It will certainly be useful for you to have access to MATLAB during lectures and
tutorials. I encourage you to bring your laptops along. You can also install MATLAB on
your phones or tablets.

Please send comments, questions and corrections to s.chongchitnan@hull.ac.uk.

Siri Chongchitnan
September 2016, Hull.

Things you should know for this course:

• Powers of 2 up to 212 (write them out below)

• Basic MATLAB and MuPAD commands

• Important calculus theorems (e.g. MVT, IVT, Rolle’s Theorem)

• Taylor’s series and the remainder R
n

• Linear algebra (e.g. row reduction, determinant, inverse, eigenvalues, diagonalisa-
tion)
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Computer Arithmetic

1.1 Introduction

We often take for granted that computers can make our lives easier by helping us perform

complex mathematical calculations. In addition, we demand that these calculations

should be done quickly and accurately, using as little resources as possible.

But how exactly does a computer achieve all this? How does a computer compute?

In this course, we will take a careful look at mathematics beyond pen and paper. We

will study how to recast mathematical problems as numerical/logical tasks, or algorithms,

that can be understood by computers, and how to optimise these algorithms for speed,

accuracy and storage. These topics form the pillars of numerical analysis.

But first, in this chapter, we will study how computers work with numbers.

1



2 CHAPTER 1. COMPUTER ARITHMETIC

1.2

A typical computer chip consists of millions of silicon transistors, each switching between

two states, charged or discharged, in other words, on or o↵, true or false, 1 or 0. All

mathematical problems must first be translated into only these two numbers. But how?

1.2.1 Integers

We are used to base�10 ( ) representation of integers, most likely because

we have evolved to have 10 fingers. We don’t often deal with everyday situations involving

10 or more things. For our ancestors, and even for us today, 10 can often seem like a big

number.

Remember that we really don’t have a symbol for ‘10’: we combine symbols for 0 to

9 to represent anything bigger than 9.

Now imagine an alien with a the same basic hand structure as ours, but it only has

one hand and two fingers, i.e. the hand only has three counting states as shown below.

In the alien’s world, they don’t often deal with two or more things, and the concept of

‘two’ seems such a big number to them. What symbols do you think would be su�cient

for their counting needs?

Now try to think like an alien and imagine how you might create a system of counting

based on these symbols, and fill in the table below.

Human system Alien’s system

0

1

2

3

4

5

6

Human system Alien’s system

7

8

9

10

11

12

13

The alien’s system is called the , or number system.
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Each of the zero and one is called a , which stands for .

Here’s another way to see the correspondence. Take our number 13:

Base 10: 13 = 1⇥ 101 + 3⇥ 100.

Base 2: (1.1)

(Now can you see why the word base is appropriate?) To prevent confusion, we will

normally indicate the base of a number with the bracket notation:

(13)10 = (1.2)

Example 1. Convert the following numbers to base 10. a) (11011)2 b) (1212)3.

Example 2. Find the binary representation of (50)10. Ans:

Here is a systematic way to convert from base 10 to binary: Keep dividing by powers

of 2 (to find the biggest power of 2 that would fit), keeping track of the remainder in

each step until the result is 0. However, with some insight, you might not always need

this algorithm.

Example 3. Convert to binary: a) (50)10, b) (121)10 c) (130)10
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Example 4. Without converting to base 10, write down the next 4 binary integers

greater than 110010. Similarly, write down the 4 integers smaller.

The rules of binary addition and subtractions are the same as we know it, but now

1 + 1 =

1.2.2 Fractions

In analogy to the representation (1.1), can you guess what these binary numbers are in

decimal?

(101.1)2 =

(0.111)2 =

The reverse conversion can be done as in Example 3, but now, instead of finding how

many powers of 2 there are, for small numbers, we want to know how many powers of

there are. Hence, instead of dividing by 2 in each step, we multiply by 2 in each

step, keeping track of the integer part and the fractional part in each stage.

Example 5. Convert to binary a) (0.875)10, b) (0.7)10.

Example 6. Using previous results, write down (50.7)10 in binary.

Ans:
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Example 5b shows that often we have to deal with recurring bits. Let’s see how one

can convert such a recurring binary number to a decimal representation.

Let’s start with something you might remember from school.

Example 7. Everything is in base 10 in this question. Convert the following to fractions:

a) 2.777 . . . b) 0.151515 . . . c) 0.234234234. . .

Note in the above examples that to shift the ‘dot’ by n places to the right, we multiply

it by .

In base 2, the idea is the same, but to shift the dot in a binary number by n places

to the right, we multiply it by .

Warning: Make sure you don’t add or subtract numbers in di↵erent bases!

Example 8. Convert the following to base-10 fractions: a) (0.1011)2 b) (0.10110)2.
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1.3 Hex reps

Binary numbers are the building blocks of machine computations, but binary expressions

are long and di�cult for human to interpret. Instead, we can work with blocks of 4 bits,

(e.g. (0101)2, (1111)2) and abbreviate each block with a single base number.

The symbols needed for base-2 numbers are . The symbols needed for

base-3 numbers are . The symbols needed for base-10 numbers are .

You can see that for base 16 numbers ( numbers), we are going to

need more symbols! These are:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

For example, (A)16 = ( )10 = ( )2. More about hex reps in the next section.

Example 9. Convert each block of bits to a single hexadecimal representation:

(0011)2 = (1100)2 = (1111)2 =

Question. What’s the next hexadecimal integer greater than F?

I (MATLAB) Example 10. What do you expect (1)10 to correspond to in hexadecimal?

Check this with MATLAB (change the display format to hex).

Your guess: . MATLAB’s answer: .

1.4 Floats

In 1985, the Institute of Electrical and Electronics Engineers (IEEE) set out a framework

for representing numbers in computers. The framework now widely used in computers is

called the IEEE Standard 754

1. We now take a look at this system in detail.

In base 10, we can write big numbers like 32222 in scientific notation as .

The same idea can be done for binary numbers. For example, take (9)10 = ( )2.

In the binary version of the scientific format, we can write

1
See http://ieeexplore.ieee.org/xpl/standards.jsp for other IEEE standards.

http://ieeexplore.ieee.org/xpl/standards.jsp
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(9)10 = +1. 001 ⇥ 23,

where we see that such a number has 3 components:

• (+ or �),

• (the sequence of bits in the box),

• (the power of 2). This will be stored as a binary integer in a

special way — more later. It’s common practice to leave the exponent in the float

format as a base-10 number. Note that the exponent can be a negative integer.

When a number is represented in this way, it is called a

representation (or simply float). In this format. the leading number immediately after

the sign is always 1 (this is called the form of floats). There are

special cases of unnormalised floats (for example, 0), more about these later.

Definition. The floating-point representation of a number x is given by

fl(x) = s1. bbbbbb . . . b ⇥ 2c, (1.3)

where

• the sign is either + (0) or � (1),

• there are M bits for the mantissa .

• there are E bits for the exponent .

The greater the values M and E, the greater the accuracy and range of representable

numbers (at the cost of memory).

Example 11. Represent these numbers in floating-point format: a) (�50)10 b) (0.7)10.
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Note that in part (b) that even if a binary number does not terminate, fl(x) must

terminate because computers can only store a finite number of bits, thus there is a loss

of precision going from x to fl(x). This means that it’s not possible to store numbers

like 0.7 exactly on any binary-based computer (which is essentially all computers today).

1.5 Precision

Numbers can be stored on computers in di↵erent formats, or precisions. There are 3

commonly used types of precisions, with the following bit profiles.

Precision Sign s Mantissa M Exponent E Total bits

23 8
11 64

64 80

Table 1.1: Number of bits for 3 commonly used IEEE-standard precisions.

We will mainly be working with double-precision numbers. MATLAB uses double in

all its calculations (although it can display in shorter-looking formats).

Example 12. Display the number 1 as a double-precision float.

Example 13. Find the floating-point rep of x, which is the smallest floating point-

number greater than 1 that can be represented in double precision.

Write down the numerical value of x� 1.

Definition. The , "mach, is the distance between 1 and the

smallest floating point number greater than 1. For double-precision floats,

=

You might be wondering if "mach is the smallest number representable as a float. Actually,

there are lots of numbers smaller than "mach which can be represented as floats (as we

will see later), although adding such a tiny number to 1 will still give you exactly 1.
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1.6 Error

In this section, we will show that "mach is roughly the error when x is stored as fl(x).

1.6.1 Types of errors

Suppose we have two quantities: Actual and Estimate. There are a few ways of quantifying

the error of the estimate.

Absolute error: (1.4)

Fractional (or relative) error: (1.5)

Percentage error: (1.6)

1.6.2 Rounding-to-Nearest rules

What does the computer do with numbers like (0.011)2, which cannot be represented

exactly as a double float? In the IEEE standard, the following

rules are applied:

I. If bit 53 of the mantissa is 1 (and bits 54 onwards are not all zeroes), round it

Example: . . . 100100 1001 . . . !

II. If bit 53 of the mantissa is 0 (and bits 54 onwards are not all zeroes), round it

Example: . . . 010010 0100 . . . !

III. If bits 53 onwards are exactly 10000 . . . (i.e. exactly halfway between up and down),

then round it such that bit 52 is 0.

Example: . . . 010010 10000 . . . !

. . . 101101 10000 . . . !
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Using these rules, we can now compare the di↵erence between x and fl(x).

Example 14. Find
�
4
3

�
10

in binary. Explain how it can be represented as a double-

precision floating-point number.

Example 15. Show that fractional error associated with the rounding in the previous

example is given by

����
fl(x)� x

x

���� =
1

4
"mach, (1.7)

where x =
�
4
3

�
10
.
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In fact, we can show that under the IEEE standard, we have. . .

Theorem 1.1. [Floating-point Rep Theorem] The fractional error in representing a

number x as a floating point fl(x) satisfies



We won’t prove it here, but you can roughly see why this is the case. From the RTN

rules, rounding up or down will change x by at most 2�53 (the first bit out of the box).

This theorem will be important when we come to numerical calculus in Chapter 5.

1.7 Machine representation

Let’s see how exactly double floats are stored in computers.

Recall from Table 1.1 that each double is assigned bits, comprising

for the sign, for the exponent and for the mantissa. These bits are all

joined into a single long string of the form

s e1e2 . . . e11 b1b2 . . . b52. (1.8)

Note the ordering. The exponent comes before the mantissa. We’ve already dealt with

the sign s (0 for ) and the mantissa in the previous section. The exponent is the

integer c in

±1. . . . ⇥ 2c

where c can be positive or negative. You might think it is easy enough to store c in the

usual binary representation, but this means we need to take care of the sign of c as well,

which could potentially be confusing.

Since 11 bits are assigned to the exponent, This means we can store integers from 0 up

to . We want half of these to represent negative exponents,

so roughly we only expect to cover exponents up to ± .

That’s the rough idea, but the actual rule is a bit more fiddly: Given an exponent

(positive or negative), we can store it as a positive integer by the following adjustment:
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Actual exponent (base 10) �1022 �1021 . . . �1 0 1 . . . 1022 1023

Biased exponent (base 10)

The rule is: given an exponent, , then store the binary

form as e1e2 . . . e11. This is called the exponent.

The extreme biased exponents 0 and 2047 are reserved for special types of

numbers, as we will see shortly.

The number 1023, is called the for double floats2.

Note: A helpful binary to remember: (1023)10 =

Example 16. Find the machine representation of 1 as a double-precision float. Give

your answer in binary form.

As you can see, writing down one of these binary rep by hand is quite painful, and

extremely di�cult for human to interpret. This is where hex reps come in.

For human readability, we can abbreviate the machine rep by converting each block

of 4 bits into one hexadecimal number. This abbreviation means that we only need to

deal with numbers per double float.

Example 17. Find the machine representation of 1 in hex format.

2
The exponential bias for single and long double floats are 127 and 16383 respectively.
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Warning: Computers do not do calculations in base 16!. The hex reps are used purely

for humans to read codes more easily.

Example 18. Determine the machine representation of
�
1
3

�
10

as a double float in hex

format. Check your answer with MATLAB.

Hence, write down the hex representation of
�
�1

3

�
10
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You might be wondering why we write the biased exponent before the mantissa

in machine reps (1.8). Well, if you line up positive numbers in increasing order of

magnitude, then the machine reps also increases in the same order. Had we written the

mantissa before the exponent, then the machine rep of 1 would appear before, say, that

of 0.75=(1.1⇥ 2�1)2.

Example 19. What is the magnitude of the smallest positive normalised number

representable as a double float? Find its hex rep.

Check your answer in MATLAB by typing realmin.

[Similarly, we can find the largest double float realmax. See Problem Sheet 1.]
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1.8 Special numbers

Let’s see the special cases when the biased exponent is 0 or 2047.

Note: Another helpful binary: (2047)10 =

1.8.1 Inf

The biased exponent is 2047 is reserved for an ‘e↵ectively’ infinite quantity. This

includes genuine infinity e.g. when evaluating , and also numbers much3

larger than the largest representable number realmax. These are all given the symbol

(or if negative), with the following machine rep:

Inf = (1.9)

(i.e. the exponent is maxed out, everything else is 0). In hex format:

Inf = (1.10)

I (MATLAB) Example 20. (a) Read MATLAB’s help on “Inf” (type doc inf).

(b) Write down a few quantities that would be assigned to �Inf.

(c) Find the hex rep of �Inf. Check with MATLAB.

(d) Predict what sin(Inf) would produce.

1.8.2 NaN

This is another naughty quantity, which results from expressions that cannot be inter-

preted as a unique limit, e.g. something like

0/0, Inf/Inf,

The result is called a (‘Not a Number’).

3
Numbers ‘a bit’ larger than realmax would be rounded down by RTN and represented as realmax.
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The machine rep of a NaN is almost the same as that of Inf, except the bits in the

mantissa are not all zeroes. The exact representation depends on the processor, but in

MATLAB, the convention is to take the machine rep of Inf and change the bits to the

immediate left and right of the exponent to 1. This means that the machine rep and hex

rep of NaN are:

(1.11)

1.8.3 Subnormals

On the opposite extreme, the minimum biased exponent 0 is reserved for tiny numbers.

In this case, the number is no longer assumed to be of the normalised form 1. . . . ⇥ 2p,

but instead, the following unnormalised form:

±0. b1b2 . . . b52 ⇥ 2�1022
. (1.12)

(note the exponent!). This kind of tiny, unnormalised float is called a .

Example 21. What is the magnitude of the smallest positive number representable as

a double float? (let’s call it tiny.) Find its machine rep in hex format and check with

MATLAB.

Note that according to a computer operating at double precision, tiny is the smallest

positive number in the Universe. There is nothing between zero and tiny, for the same

reason there is nothing between 1 and
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The figure below summarises the di↵erences between tiny, realmin and "mach.

Note the distribution of real numbers, according to comput-

ers. Without infinite storage, it’s impossible for binary-based computers to understand

the real line R.
We see from the figure that the IEEE standard endows a very dense, high resolution

environment around zero, which gradually spreads out, becoming less resolved the further

you move away from zero. This is because in machine representation, the number of

significant figures is fixed - so when you try to represent larger and larger numbers, the

last significant figure corresponds to increasingly large numbers.

1.8.4 Zero

Finally, there’s the most important subnormal number of all: zero. Its exponent and

mantissa comprise entirely of 0 bits, though it can carry either signs depending on

the calculation (for example, and have opposite signs).

MATLAB treats +0 and �0 as equal; Try using == to test their equivalence in MATLAB.

Example 22. Find the machine reps for ±0 in hex format.

I (MATLAB) Example 23. (Strange but true.) Use the idea of ±0 to construct a

counter-example to the following universally accepted statement.

If x = y, then f(x) = f(y).



18 CHAPTER 1. COMPUTER ARITHMETIC

1.9 Float addition

I (MATLAB) Example 24. This is another MATLAB mystery. Let’s define the following

double-precision variables.

x =
4

3
, y = x� 1, z = y � 1

3
.

What is the correct value of z? What happens when you do this in MATLAB?

We shall try to understand this result using what we’ve learnt so far.

Example 25. Show that in the above working, the machine rep of z is �1
4"mach.

You can see that the main culprit is the .

The extra zeros supplied by the computer during the subtraction are called .

The RTN rules and spurious zeros are prime suspects when we see such surprising

results on MATLAB. Any subtraction involving numbers not exactly representable as

binary numbers will su↵er from this problem. In long calculations, this e↵ect could

accumulate to give you a result that’s far from what you expect.

This not only happens in MATLAB, but in all computers under the IEEE standard.
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I (MATLAB) Example 26. Experiment with MATLAB and write down more ‘surprising’

results such as the one above.

Although such ‘errors’ cannot be eliminated completely, keep in mind that they

are always predictable, and thus we can always work out precisely how accurate each

computer calculation is. An important element of numerical analysis is to study how

such tiny "mach-size errors propagate through long calculations, and how to avoid error

amplification and minimize the total error.

1.10 Loss of significance

We end this chapter with another important di↵erence between computer mathematics

and ‘real’ mathematics, best illustrated through the following example.

I (MATLAB) Example 27. Consider two functions:

f(x) =
p
x

2 + ↵� x, g(x) =
↵p

x

2 + ↵ + x

(↵ > 0). (1.13)

(a) Verify that f(x) = g(x).

(b) Let ↵ = 10�13. Use MATLAB to find the values of the functions when x = 1, 10, 50.

Which expression gives a more accurate answer?

f(x) g(x)

x = 1

10

50

Can you see where the problem lies?
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It is actually the same problems which gave us the strange results in the last sec-

tion: the rounding-to-nearest rules, and the introduction of spurious zeroes during

.

To give a simpler analogy, suppose that instead of the usual 52 bit mantissa, our

cheap computer can only store up to 3 significant digits. Now suppose we try to perform

the subtraction below: p
4.01� 2.00

Although
p
4.01 = 2.002498 . . ., according to our cheap computer,

p
4.01 = ,

so
p
4.01 � 2.00 = . We started with two numbers with 3 significant fig-

ures, but the result contains fewer significant figures. This problem is known as

.

Similarly, in Example 27, the mantissa for
p
x

2 + ↵ and x are identical except for

the tail bits. The subtraction causes a flood of many spurious zeroes - hence the loss of

significance.

Moral of the story: As far as possible, you must

It is sometimes di�cult to see where such a subtraction might occur. Anticipation

will come with experience. The rule of thumb is to try to turn potentially dangerous

subtractions into additions and/or divisions by using algebraic identities or power series.

Example 28. Why could there potentially be loss of significance when each of the

following expressions is calculated? How can they be avoided?

i) 1� cos x, ii) ln x� 1.
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I (MATLAB) Example 29. Solve the equation for x (correct to 4 significant figures)

x

2 + 912x� 3 = 0.

MATLAB would have a hard time solving this equation, even with built-in functions.

However, try the solve function in MuPad (see last year’s worksheet).
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Example 30. Evaluate the function

f(x) = e

x � x� 1

at x = 10�9, correct to two significant figures.



2
Root finding

In this Chapter, we will study a number of root-finding methods, and by roots, we mean

the solution(s) to

= (2.1)

Root-finding is important because any equation can be put into the form f(x) = 0.

For example, to solve x

3 = 1� x, we solve for the root(s) of . We

will be focussing on equations which are di�cult or impossible to solve analytically. We

shall see how to attack them numerically, not just on MATLAB but on any computer.

Here’s a little preview: MATLAB actually has a built-in root-finder called fzero,

which you can test with the command:

fzero(@(x) x^3+x-1, [0,1])

By the end of the Chapter, you will understand what MATLAB does when we issue

this command. But first, let’s look at a technique which will be useful when dealing with

polynomials, and help you get back into the MATLAB programming.

23
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2.1 Polynomial evaluation

Consider the polynomial P (x) = 2x4 + 3x3
� 3x2 + 5x� 1. What is the most e�cient

way to evaluate P (12) on the computer?

Assume that we have stored 1
2 in the memory. Of course we could do this in the most

straightforward way.

This requires multiplies and adds. More cleverly, we can

reduce the number of operations by storing the successive powers of 1
2 .

This requires multiplies and adds.

Better yet, we could create layers of simple functions:

This only requires multiplies and adds. It can be shown that

this is the minimum number of operations achievable. This is called the method of

(or Horner’s method1).

Saving a few microseconds on polynomial evaluations may not seem much, but in

more complex tasks, we may need to evaluate high-order polynomials at hundreds of

points. The time and resources saved can be better spent on more useful tasks.

Always avoid redundant calculations!

1William Horner (1786-1837), British mathematician, published this result in 1819, although the
technique was known to a number of previous mathematicians.
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Example 1. (do this by hand) Evaluate P (x) = 6x3
� 2x2

� 3x + 7 at x = 0.5 using

nested multiplication. How many multiplies and adds do you need?

Example 2. What is the minimum number of multiplies and adds needed to evaluate a

general polynomial degree n

P (x) = a0 + a1x+ a2x
2
. . .+ a

n

x

n

, (2.2)

at x = x0 using nested multiplication?

In fact, it can be shown that nested multiplication is optimal, i.e. no other techniques

can be more e�cient2.
2However, it is possible to ‘cheat’ by recasting the polynomial in a di↵erent form (preconditioning) and

beat down the number of multiplications further, at the cost of computing and storing new coe�cients,
e.g. it’s possible to evaluate any 6th-degree polynomial in 4 multiplies and 7 adds.
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I (MATLAB) Example 3. Create a MATLAB function nest(a,x) which takes two

arguments:

• a is the vector of polynomial coe�cients (constant first) [a0, a1, a2, . . . an].

• x is the value at which to evaluate the polynomial.

and computes a0 + a1x+ a2x
2
. . .+ a

n

x

n using nested multiplication.

If you have done this right, you should find that, for example,

nest([7 -3 -2 6], 0.5)

gives the answer to Example 1

Tips and warnings

• Dig up MATLAB notes from last year.

• Annotate your code (using %) so that others can understand your thought process.

• Try a for loop (though there are other ways).

• Careful: The index of a MATLAB array starts from 1. For example, if a=[4 7],

then a(1)=4.

• Test, test and test your code. Codes that give the wrong answer get at most 50%.

• Codes that don’t run get at most 40%.

• Codes copied wholesale from the internet or from one another will get 0%.

Save your code as nest.m and upload it onto Canvas by 2359hr, Thursday 10th November.
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2.2 Bisection method

Example 4. Sketch the graph of f(x) = x

3 + x� 1.

Our preliminary investigation reveals that x3 + x� 1 = 0 has only 1 real root. Note

that f(0) < 0 and f(1) > 0. Since f is continuous, 9c 2 (0, 1) such that

by the . We say that the root is

by 0 and 1.

What would then be your first guess for the root? One could first try x0 = .

We find that f(x0) , so it’s not quite right. But what this shows is that we can

narrow down our search to the interval , again by the virtue of the .

We can then repeat, or , our method to find new bracketing intervals that

become as small as desired. This is the idea behind the bisection method.

Example 5. (Calculator only) Estimate the real root of x3+x� 1 = 0 using 3 iterations

of bisection (Note: the first bisection is the 0th iteration. We want to find x3).

Note that we only need the sign of f(x
i

), not its value, so we can save some writing.

f(a = 0) < 0 f(b = 1) > 0 f(x0 = 0.5) < 0
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In general, starting with the interval [a, b], after n iterations of bisection, we know

that the root lies somewhere in [a
n

, b

n

], so our best estimate for the root is

x

n

= with error at most ±

We can simplify the error (call it e
n

) a bit by noting that the length of the interval is

halved with each new iteration:

b� a =

Corollary. For the bisection method starting with the interval [a, b], the error of the

nth iterate, x
n

, satisfies the bound

(2.3)

Each iteration of bisection is guaranteed to halve the error. In fact, bisection is the

only root-finding method with a risk-free guaranteed result (provided the root exists).

We will be meeting the error quite often, so let’s define it properly:

Definition. The error, e
n

, is the absolute di↵erence between the actual root c, and the

estimate x

n

, obtained after n iteration of a root finding method, i.e.

= (2.4)

Example 6. Let " > 0 be an arbitrarily small number. Find the number of iterations, n,

which will guarantee that the error from the bisection method, starting from the interval

[a, b], satisfies e
n

 ".
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Definition. An estimate is said to be correct to p decimal places if e
n

< 0.5⇥ 10�p.

Example 7. In Example 5, how many iterations would it take so that the estimate is

guaranteed to be correct to i) 3 decimal places? ii) 8 decimal places?

I (MATLAB) Example 8. Let’s now have a little help from MATLAB. Write a MATLAB

function which evaluates f(x) = x

3 + x� 1. Continue the bisection in Example 5 until

the root is guaranteed to be accurate to 3 decimal places.

[Tip: To create a quick function without an M-file, look up “anonymous functions”.]
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Example 9. Demonstrate graphically that there is only one solution to the equation

e

�x = x� 1.

Find the integer N such that the solution lies in the interval [N,N + 1].

Hence, estimate the root using the bisection method with 4 iterations to obtain x4.

Estimate the error of your answer.
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Does bisection always work?

Note that for the bisection algorithm to start, we need to find an interval [a, b] in

which f(a) and f(b) have opposite signs, in other words,

f(a)f(b)

But this may not be possible. Take f(x) = x

2 for example. Think of other examples.

Even if bisection can start, it may not converge to the correct answer(s).

These examples show that we cannot simply use root-finding routines as magical

‘black boxes’ without understanding something about the function.

Computing is not about crunching numbers. Without mathemati-

cal insight, what we obtain will be meaningless.
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2.3 Convergence

You might assume that the more iterations you do, the closer your estimate will be to

the actual root. However, this may not be the case if the function is not ‘well-behaved’,

as we saw on the previous page.

Even if the estimate does get closer and closer to the root, it may happen slowly for

low-tech root-finders (like the bisection method), whilst more sophisticated methods (like

fzero) might be faster at getting to the root. In any case, it would be good to have a

way of measuring how quickly the estimate gets closer to the actual answer. This is the

idea behind convergence.

Definition. An iterative method is said to converge with order k if

lim
n!1

= M. (2.5)

The constant M is called the .

If k = 1, the method is said to converge . The limit with k = 1 reminds

us of the from Numbers, Sequences and Series. For this reason,

we require that if k = 1.

If k > 1, the method is said to converge . In this case the

only requirement on M is that it is finite. The bigger the order k, the faster the search

converges to an answer (can you see why?).

Of course we won’t know exactly what the error e

n

is (otherwise you would also

know the root exactly). Thus, we can only use some estimate of e
n

(to the best of

our knowledge) in (2.5). Using an upper bound of e
n

in (2.5) will give a conservative

(‘worst-case scenario’) estimate for k .

Example 10. Prove that for the bisection method converges linearly.
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I (MATLAB) Example 11. Below is a MATLAB M-file for the bisection method.

1 function x=bisect(f,a,b,err)

2 fa = f(a);

3 fb = f(b);

4 if fa*fb>=0

5 error(’Root is not bracketed.’)

6 end

7 while (b-a)/2>err

8 x=(a+b)/2;

9 fx = f(x);

10 if fx==0

11 break

12 end

13 if fx*fa<0

14 b=x;

15 fb=fx;

16 else

17 a=x;

18 fa=fx;

19 end

20 end

21 x=(a+b)/2;

(a) Copy and save the above code as bisect.m in your computer/G-drive. Annotate the

code (using %) thoroughly, demonstrating your understanding of the code.

(b) Modify the code so that after each iteration, the code displays the iteration number, n,

and the estimate, x
n

.

On Canvas, upload your modified M-file, and answer the following questions.

1. Why it is a good idea to define new variables in lines 2, 3 and 9 (as opposed to using

f(a), f(b), f(x) directly where needed)?

2. Give the command(s) needed to use the above code to find the root of x3 + x� 1 to 8

decimal places. Write down the final answer obtained.

3. Are there any lines in the code above that are redundant? If so, which one(s)?
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2.4 When to stop?

For iterative methods like bisection, we need to impose a ,

or your code will run forever. Ideally, we want the routine to stop when the estimate, x
n

,

is su�ciently close to the root, c, i.e. when the error e
n

= |x

n

� c| is smaller than some

given , " (as in Example 6). However, some root-finding methods do not

narrow down the interval containing c in such a systematic way, and so it’s di�cult to

estimate e

n

directly. So, when should we tell the root finder to stop?

(A) Stop after N iterations.

This is not a great idea in principle. Why?

However, it is still desirable to set the limit on the maximum number of iterations

allowed. Why?

(B) Stop when |f(x
n

)| < ".

This may seem sensible since, after all, we are solving f(x) = 0, so we want the

LHS to be as small as possible. But . . .

(C) Stop when |x

n+1 � x

n

| < ".

This gives a good idea of the improvement in having done one more iteration.

In practice, it is common to use stopping criterion (C) along with (A) as a safety net.

We will implement these in the next Section.

Here is a schematic of two ways in which we can implement criteria (A) and (C)

together in MATLAB.
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2.5 Newton-Raphson method

This method was invented by Isaac Newton (1671) and independently by the English

mathematician Joseph Raphson (1690). It is best explained with the following figure.

This method is based on the observation that the tangent lines near the root will also

intersect the x axis near the root.

Here is the work flow. We start with an initial guess, x0 close to the root.

1. Draw a tangent line at x0.

2. Find the x-intercept of the tangent line. This is the new estimate of the root x1.

3. Repeat the above steps to obtain x2, x3 etc. until a stopping criterion kicks in.

Example 12. Let f be a di↵erentiable function on R. Find the x-intercept (call it x1)

of the tangent line drawn at x = x0.
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Having found x1 as the new guess, we can obtain x2 with the same formula

x2 = (2.6)

and so on. Hence we have the following iterative scheme for the Newton-Raphson method.

x0 = initial guess,

x

n+1 =

When working with a calculator, try to store exact results as far as possible. Even a

small round-o↵ error can snowball to give you a rubbish final answer. If storing is not

possible, at least keep one or two more decimal places than the required accuracy.

Another tip: simplifying the Newton-Raphson formula (if possible) before substituting

in numbers will save a lot of time.

Example 13. (Calculator only) Starting with x0 = 0.5, use 3 iterations of the Newton-

Raphson method to obtain the estimate, x3, of solution to x

3 + x� 1 = 0, giving your

answer to 4 decimal places.

If the method converges, we will see that increasing the number of iterations produces

little changes. We will deal with the convergence a bit later.
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Example 14. I went to Poundland and bought a calculator which can only do addition,

subtraction, multiplication and division. Ambitiously, I want to use it to calculate
p

3,

correct to 3 decimal places. What can I do?

Example 15. Sadly, the division button on my cheap calculator is now broken. How

can I use it to calculate 1/1.37, correct to 4 decimal places?
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I (MATLAB) Example 16. Create a MATLAB function

newton(f, df, x0, tol, Nmax)

which finds a root of f(x) = 0 using the Newton-Raphson method, where the input

arguments are as follows.

• f is the function.

• df the derivative of f .

• x0 is the initial guess.

• tol is tolerance, such that the code stops when |x

n+1 � x

n

| < tol [see Criterion

(C) in §2.4].

• Nmax is the maximum number of iterations allowed [Criterion (A)].

Your code should be:

• well-annotated to show how you break the problem down into smaller tasks.

Imagine if you were to send your code to one of your classmates. You should give

enough annotation for them to be able to interpret what you’re trying to.

• displaying some useful information to the user as it runs (e.g. iteration number,

current estimate, etc. ).

• well-tested (e.g. see if it gives the correct answers to the Examples in this Chapter).

Submit your M-file onto Canvas.
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With a bit of experience, you will find that the Newton-Raphson method often has a

shaky start, with estimates going all over the place. But once converge starts to take

hold, the estimates converge very rapidly (much faster than the bisection method). The

following Theorem explains why.

Theorem 2.1. Let f be an infinitely di↵erentiable function with f(c) = 0 and f

0(c) 6= 0.

If the Newton-Raphson method converges, then it converges quadratically, i.e.

= (2.7)

where e

n

⌘ |x

n

� c|.

Proof. Recall the Taylor expansion for f(x) around x = x

n

, to linear order, with

Lagrange’s form of the remainder R2(x) from your Calculus course:

f(x) = (2.8)

where ⇠ 2

Now set x = c (the root of f(x) = 0) and rearrange:

Since ⇠ is a number between x

n

and c, taking the limit as n ! 1, we find that x
n

!

(assuming the estimates converge), and hence ⇠ ! by .

Hence,

lim
n!1

e

n+1

e

2
n

=
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For the quadratic convergence to take hold, it is essential that f 0(c) 6= 0. Let’s see

what happens when this condition is not satisfied.

Example 17. Suppose we use the Newton-Raphson method to solve x2 = 0, with initial

guess x0 6= 0. Find the rate and order of convergence.

This shows a typical behaviour of the Newton-Raphson method at multiple roots (i.e.

where f(c) = f

0(c) = 0). In fact, one can show that if a root has multiplicity > 1, then

the Newton-Raphson only converges linearly. There are ways to fix this, however: look

up “modified Newton’s method” if you’re interested.

Example 18. Sketch some situations in which the Newton-Raphson method does not

converge



2.6. SECANT METHOD 41

2.6 Secant method

Newton’s method converges faster than the bisection method because it relies on an

extra piece of information: the expression for . But what can we do when the

derivative is di�cult to obtain?

The idea is to replace the tangent by a secant, which is just a straight line joining

two points, x0 and x1, which will be our initial guesses, as shown in the figure below.

Note that the initial guesses do not have to bracket the root.

The work scheme for this method is as follows.

1. Draw a line joining x0 and x1.

2. Find the x-intercept of this line. This is the new estimate of the root x2.

3. Repeat Step 1 using and to obtain x3 etc. until a stopping criterion

kicks in.

Example 19. Find the x-intercept of the line joining (x0, f(x0)) and (x1, f(x1)).
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Having found x2 as the new guess, we can obtain x3 with the formula

x3 = (2.9)

and so on. Hence we have the following iterative scheme for the secant method.

x0, x1 = initial guess,

x

n+1 =

As you can see, the secant formula is simply an approximate version of the the Newton-

Raphson formula, where the derivative is approximated by the di↵erence quotient:

f

0(x
n

) ⇡

Example 20. (Calculator only) Starting with x0 = 0 and x1 = 1, Use the secant method

to obtain the estimate, x4, for the root of x3 + x� 1 = 0. Give your answer to 3 decimal

places.
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I like to call the secant method is the “poor man’s’ Newton-Raphson” (make do when

we don’t have derivatives).

Now let’s look at the order of convergence of the secant method.

Question. (guess) Rank the bisection, Newton, and secant methods in increasing order

of convergence.

Theorem 2.2. Suppose the estimates obtained from the secant method converge to the

root c, with order k > 0, i.e.

lim
n!1

e

n+1

e

k

n

= C < 1, (2.10)

then k = .

In other words, the secant method converges .

Proof. (informal) Assume that the convergence behaviour becomes apparent after a

large number of iterations, say, n 2 N.. This means that there exist k (the order of

convergence) and C (the rate of convergence) such that

(2.11)

Here we have used the approximation symbol ⇡ quite loosely for now.

Inspired by the fact that the Newton’s method converges quadratically, and the fact

that each new iterate depends on two previous ones, we guess that there should also be

a constant M such that

(2.12)
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The proof could have been made more rigorous by dealing with inequalities rather

than ⇡, but it is a bit more tedious. I believe the heuristic proof gives us a flavour of

why the Golden Ratio appears.

2.7 Comparison of methods

Bisection Newton-Raphson Secant

Initial guesses

Order of
convergence

Pros

Cons



3
Linear Systems

By now, you would have had plenty of exposure to linear algebra from a theoretical point

of view. As usual, we will be discussing solutions to the equation

Ax = b,

where A is a square matrix of numbers, b is a column vector of numbers, and x is a

column vector of unknowns.

You might be tempted to write the solution as x = . However, in real

applications, inverting matrices involves a large number of operations (roughly

+ and ⇥ are needed to invert an n⇥ n matrix), and is notoriously slow for large matrices.

Besides, performing more operations means more opportunities for errors to snowball.

In MATLAB, this equation is most e�ciently solved using the command

= (3.1)

Note the direction of the backslash operator \

45
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In this Chapter, we will study ways in which linear systems can be solved e�ciently

on a computer. By the end of the Chapter, we will understand what exactly the backslash

operator does.

I (MATLAB) Example 1. Let’s try to solve Ax = b, where A is a 3 ⇥ 3 matrix of

random numbers between 0 and 1. The MATLAB command to generate A is

rand(3)

Let b = (1, 1, 1)T .

(a) Solve the system using the backslash operator.

(b) Solve the system using matrix inverse.

The assignment is to compare the time taken to solve the system using the 2 methods

as the dimension of the problem increases from 3 to 5000. Which method is faster?

Convey this information in a graph. Imagine you have a friend who stubbornly

believes that the matrix-inverse method is a good method to solve this problem. You

should aim to produce a graph that will decisively convince them to change their mind.

Hint : Use the tic and toc commands to time your code.

Upload two things onto Canvas.

• the M-file used to generate the data for the graph.

• your graph in pdf.

Be creative.
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3.1 LU factorization

Let’s start with a warm-up exercise.

Example 2. Solve the system

x1 + 2x2 � x3 = 3

2x1 + x2 � 2x3 = 3 (3.2)

�3x1 + x2 + x3 = �6

by Gaussian elimination to row-echelon form.
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Example 3. Describe what happens when a 3⇥ 3 matrix A is pre-multiplied by

0

B@
1

↵ 1

1

1

CA (where blanks are zeroes).

Hence, write down matrices L1, L2 and L3 such that

L3L2L1

0

B@
1 2 �1

2 1 �2

�3 1 1

1

CA =

0

B@
1 2 �1

0 �3 0

0 0 �2

1

CA .

Example 4. Write down the inverse of

0

B@
1

↵ 1

1

1

CA. Hence, write down L

�1
1 , L

�1
2 , L

�1
3 .
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Hence, we see that the matrix in Example 2 can be written as a product of matrices:

A =

0

B@
1 2 �1

2 1 �2

�3 1 1

1

CA =

Now note the following matrix identity (the ordering is important).

0

B@
1

↵1 1

1

1

CA

0

B@
1

1

↵2 1

1

CA

0

B@
1

1

↵3 1

1

CA =

0

B@

1

CA . (3.3)

Thus, we see that A can be written as a product of two ‘triangular’ matrices:

A =

0

B@
1 2 �1

2 1 �2

�3 1 1

1

CA = (3.4)

This is an example of .

Definition. A matrix A is said to be if Aij = 0, i < j, or

if .

To find the LU factorization of a matrix, simply perform row reduction as usual to

get U in row-echelon form, keeping track of the row operations. Then form L with 1

along the diagonal, with the of the multipliers in the lower triangle.

Example 5. Find the LU factorization of a)

 
1 �3

2 2

!
b)

0

B@
3 1 2

6 3 4

3 1 5

1

CA
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Let’s see how we can use LU factorization to help us solve linear systems. Here’s a

step-by-step guide:

• From Ax = b, we LU -factorize so that .

• Let y = . First we solve for y (easy).

• Now solve for x (easy).

Example 6. Solve the system (3.2) using LU factorization.

Example 7. Solve the same system but with the RHS changed to b =
⇣
2 1 2

⌘T
.

How would you have done this with ‘traditional’ Gaussian elimination?
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So, why do LU? It feels like we’re doing extra work with LU factorization compared

with Gaussian elimination, so why do we bother?

Firstly, as we saw in the last Example, LU factorization keeps a record of the row

operations, which remains the same even if b is changed. There is no need to know b

until after the factorization is complete. On the other hand, a ‘traditional’ Gaussian

elimination would have to be redone from scratch each time b is changed.

Secondly, there is really no extra computational work compared with Gaussian

elimination. We just felt as though there are extra steps in LU factorization simply

because we only dealt with b separately in the final stage, whereas in Gaussian elimination,

we involved b in our calculation from the beginning in augmented form.

We now argue that for problems involving multiple b’s, the LU approach is significantly

faster than naive Gaussian elimination.

3.1.1 Complexity

How many operations (i.e. + or ⇥) does it take to reduce an n⇥ n matrix to row-echlon

form by Gaussian elimination? Here’s a rough estimate.

In computing, we often speak of the of an algorithm, which quantifies

the computational cost. For example, one can show that the number of operations needed

to obtain the row-echelon form by Gaussian elimination is at most

2n3

3
+

n

2

2
� 7n

6
. (3.5)

When n is large, only the leading term is important. We use the notation

to express the leading order of an expression: We can say that Gaussian elimination is

an process.

On the other hand, the process of back substitution (i.e. solving for xi given a

triangular matrix) is a far less demanding process, as we now show.
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Suppose we want to solve for x1, x2 . . . xn from the augmented matrix

0

BBBBBBB@

a11 a12 . . . a1n b1

a22 . . . a2n b2

. . .
...

...

an�1,n�1 an�1,n bn�1

ann bn

1

CCCCCCCA

Example 8. Show that the back-substitution process is an process.

So if we have to solve Ax = b for multiple b’s, all we have to do is LU -factorize once,

then do multiple back-substitutions, costing each time. This is much faster

than multiple Gaussian eliminations, costing each time.

Question. What is the complexity of calculating the determinant of an n⇥ n matrix by

the usual row or column expansion? Ans: .

MATLAB does not use row expansion in calculating a determinants. Instead, it first

performs a version of the LU factorization on the matrix. Can you see why the LU

factorization would help with finding the determinant?
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3.2 PA=LU factorization

3.2.1 Row permutation

Example 9. Show that

 
0 1

1 1

!
does not have an LU factorization.

You may have noticed that the matrix in the above Example would already be in a

triangular form had we swapped the rows. This can be achieved by pre-multiplying by a

matrix

 ! 
0 1

1 1

!
=

 !
(3.6)

Example 10. Write down the all matrices which can be used to swap (permute) rows

of a 3⇥ 3 matrix. How many such matrices are there with dimension n⇥ n?

These row swappers are called matrices. You might have

already seen them in an algebra course - indeed they form a under matrix

multiplication.
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For our purpose of solving Ax = b, where A does not have an LU factorization, all

we need is to do is keep swapping by multiplying by a succession of permutation matrices,

which when multiplied altogether become another permutation matrix, P . More about

this in the next section.

Example 11. Given the matrix A =

 
0 1

1 1

!
, write down an equation connecting it

with P =

 !
, L =

 !
and U =

 !
. Ans:

I (MATLAB) Example 12. To see the LU decomposition of matrix A on MATLAB, use

the command lu(A), and define two matrices as output. For example, [L,U]= lu(A).

Similarly, where a permutation matrix is needed, use the command [L,U,P]= lu(A)

(the ordering is important).

• Use MATLAB to confirm the factorization the above Example.

• Does MATLAB agree with our LU factorization in Example 5?

Write down its outputs for L,U and P for part (b).

3.2.2 Swamping

Let’s try to understand why MATLAB’s suggestion for the LU factorization in the

previous Example was not what we expected.
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Example 13. Consider the following system:

10�20
x1 + x2 = 1

x1 + 2x2 = 4

(a) Use Gaussian elimination to find exact solutions.

(b) Estimate the numerical values of the exact solutions.

(c) What happens if these calculations were to be done on a computer with IEEE

double precision?

This Example demonstrates the kind of problem that can arise if the multipliers

involved in performing the row reduction are large. We see that the e↵ect of subtracting

1020⇥R1 was to overwhelm, or , R2. The information contained in R2 is

then completely dominated by R1, and this leads to inaccurate answers due to limitation

of IEEE arithmetic. This kind of inaccuracy introduced by using large multipliers during

row reduction is called swamping.
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Let’s look at the same problem again with the rows swapped.

Example 14. Solve the following system with Gaussian elimination under IEEE double-

precision arithmetic.

x1 + 2x2 = 4

10�20
x1 + x2 = 1

Swapping rows allowed us to keep the multiplier small, and so we retain the fragile

information in both equations. The solutions aren’t exactly correct, but they are very

good approximations of the exact answers, certainly much better than (x1, x2) = (0, 1).

The moral of the story : . One way to do this,

as we have seen, is to swap rows around before doing row reduction so that the leading

coe�cients with the largest magnitude in each column rise to the top. This kind of row

reduction plus vigilant row-swapping is called partial pivoting. In this method, multipliers

are always kept small (magnitude at most 1) to avoid swamping. Here’s an example.
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Example 15. Apply Gaussian elimination with partial pivoting to solve the system

x1 � x2 + 3x3 = �3

�x1 � 2x3 = 1 (3.7)

2x1 + 2x2 + 4x3 = �1

Note that the magnitude of the multipliers are all , hence swamping is

avoided.
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Example 16. Write down a single matrix, P , which does all the row swapping in the

previous Example.

We now combine partial pivoting with LU factorization. To keep track of the positions

of all the multipliers (even when they are swapped), when a coe�cient is eliminated, let’s

make a HUGE zero, inside which we write the multiplier used to eliminate the coe↵cient

in that position.

Example 17. Find the LU factorization of A =

0

B@
1 �1 3

�1 0 �2

2 2 4

1

CA, with partial pivoting.
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The matrices P , L and U obtained in the previous example are related to A by a

single equation:

This is the so-called factorization. In fact, even if a matrix can be

factorized without partial pivoting, MATLAB still does PA = LU to prevent potential

error from swamping.

Example 18. Find the PA = LU factorization of the matrix

0

B@
3 1 2

6 3 4

3 1 5

1

CA. Check your

answers with MATLAB’s answers in Example 12.
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Example 19. Outline the steps involved in solving Ax = b using the PA = LU

factorization

Example 20. Solve the following system using PA = LU factorization.

3x1 + x2 + 2x3 = 0

6x1 + 3x2 + 4x3 = 1 (3.8)

3x1 + x2 + 5x3 = 3
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3.3 Cholesky factorization

LU (or PA = LU) factorization can be applied to any matrix, but if a matrix has special

properties (e.g. symmetric, or has an almost diagonal structure), we could exploit these

properties to speed up the factorization process.

In this section, we will study the factorization of symmetric positive-definite matrices,

called the Cholesky factorization1 This method of solving Ax = b is faster than the usual

LU algorithm by about a factor of 2 and requires less storage.

We will be using some concepts from last year’s Linear Algebra course, so it’s worth

digging up your old notes.

3.3.1 Positive-definite matrices

Definition. A matrix A is if

x

T
Ax

for all column vectors x (x 6= 0).

Example 21. (a) Show using the definition that the following matrices are positive

definite.

a)

 
1 1

�1 1

!
b)

 
2 2

2 5

!
c)

0

B@
1 0 0

0 1 0

0 0 1

1

CA

(b) Show that the matrix

 
2 4

4 5

!
and

0

B@
1 1 1

1 2 4

1 4 5

1

CA are not positive definite.

Ans: See Lab worksheet.

Note that the ‘positive’ in the phrase ‘positive-definite’ refers to the expression x

T
Ax.

Being a positive-definite matrix does not mean that the matrix entries are positive, as

the above Examples shows.

1
French mathematician André-Louis Cholesky (1875� 1918) developed this method as a military

engineer during WWI.
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3.3.2 Cholesky ⇡ ‘square-root’ for matrices

Definition. A matrix A is symmetric if .

The idea of Cholesky factorization is that if a matrix A is symmetric and positive

definite, then it has a ‘square-root’, R, which is an upper triangular matrix, such that

A = (3.9)

Example 22. (a) Construct an upper triangular matrix R such that A =

 
a b

b c

!
=

R

T
R. State the assumptions you need for this factorization to work.

(b) Hence, find a Cholesky factorization of

 
2 2

2 5

!
.

(c) Is R unique?

The previous Example gives us a flavour of the factorization method. Next we want

to establish that a symmetric positive-definite matrix will automatically satisfy all the

conditions needed in our ad-hoc construction of R.
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3.3.3 Properties of SPD matrices

I’m getting tired of writing symmetric, positive-definite matrices, so we’ll call them

matrices from now on. First, a little warm-up exercise.

Example 23. Find the eigenvalues and eigenvectors of

 
2 2

2 5

!
.

Lemma 1. If A is symmetric, then it is positive-definite if and only if all its eigenvalues

are positive.

Proof. Suppose that A is positive definite. Let v be an eigenvector of A with eigenvalue

�. Observe that

0 < v

T
Av =

This proves the ‘only if’ part.
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Now let’s look at the ‘if’ part. Recall from last year’s Linear Algebra that if A is

symmetric, then it can be diagonalised to

D =

where the diagonal entries of the diagonal matrix D are its , and

columns of P are its . These n eigenvectors, when normalized, in fact

form an of Rn. Furthermore, P T = (i.e. P is an

matrix).

Therefore we can write any nonzero vector x as

x =

where v̂i are the normalised eigenvectors, and ci are not all zero. Now observe that

x

T
Ax =

Lemma 2. If matrix A is SPD, then |A| > 0.

Proof. Since A is symmetric, can be diagonalised so that A = (where

P

�1 = P

T ).

Next, we will need to discuss matrices of full rank. Let’s recall what this means.
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Definition. A square matrix is said to be full rank if its columns are

(and so are its rows).

Example 24. Write down a i) 3⇥ 3 ii) 2⇥ 3 iii) 5⇥ 3 matrix of full rank.

If a non-square matrix, say, 4 ⇥ 3, is full rank, we see that the rows can’t all be

linearly independent, so it’s not useful to discuss the rows. We say that a 4⇥ 3 matrix is

full rank if its are linearly independent. Similarly, a 3⇥ 4 matrix is full

rank if its are linearly independent.

Definition. An n⇥m matrix with n  m is said to be full rank if its

are linearly independent. Similarly, if n � m, then it is full rank if its

are linearly independent.

Lemma 3. If A is an n⇥ n SPD matrix, and X is an n⇥m matrix of full rank with

n � m, then X

T
AX is an m⇥m SPD matrix.

Proof. Let M = X

T
AX. M is clearly symmetric because

M

T =

To see that M is positive definite, for any column vector v 6= 0, we find

v

T
Mv =

where we assume that Xv 6= 0. Is it possible for Xv = 0 for some unlucky choice of v?

Write X is terms of its column X =
⇣
x1 x2 . . .xm

⌘
and write v =

⇣
v1 v2 . . . vm

⌘T
.

Hence Xv can be expressed as:
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Definition. A principal submatrix of a square matrix A is a square matrix whose

diagonal comprises consecutive diagonal entries of A.

Example 25. Write down all principal submatrices of

0

B@
1 2 3

4 5 6

7 8 9

1

CA.

Example 26. Write down a matrix X such that XT

0

B@
1 2 3

4 5 6

7 8 9

1

CAX equals

a)

 
1 2

4 5

!
b)

 
5 6

8 9

!
c)
⇣
9
⌘

Lemma 4. Any principal submatrix of a SPD matrix is also SPD.

Proof. Let A be an n⇥n SPD matrix. To obtain a principal submatrix, M , of dimension

m ⇥ m, we sandwich A between X

T and X, as in the above Examples, where X

comprises consecutive columns of the , and X is therefore

.

The dimension of X is with , and so M = X

T
AX

is SPD by Lemma .

Corollary. If A is an SPD matrix, then its diagonal entries are all .
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Let’s practise spotting SPD matrices using all the Lemmas we’ve proved so far.

Example 27. Are the following symmetric matrices positive definite?

A =

0

B@
1 2 1

2 1 1

1 1 0

1

CA , B =

0

B@
1 1 1

1 2 4

1 4 5

1

CA , C with |C| = �2, D with eigenvalues 2, 3,�4.

Here’s one final Lemma.

Lemma 5. If A and B are both upper triangular matrices, then AB is also upper

triangular.

Proof. Let C = AB. The (i, j) entry of C is given by

cij =
X

We want to show that cij = 0 if .

Since A is upper triangular, aik = 0 if , so we can simply sum over the

nonzero entries of A:

cij =
X

Suppose i > j. If k � i, then . But B is upper triangular, which means

. Hence cij = 0 for i > j and C is indeed upper triangular.

Now we are ready to tackle the Cholesky factorization for a general SPD matrix.
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3.3.4 Cholesky factorization theorem

Theorem 3.1. If A is a SPD matrix, there exists an upper triangular matrix R such

that

Proof. Let A be an n⇥ n SPD matrix. We can write it in block form as

A =

where b is a column vector, and C is a symmetric matrix of size .

By Lemma 4, we also know that the the top left entry, a, is .

Now observe that we can split A into:

A =

 p
a

b/

p
a I

! 
1

C � bb

T
/a

! p
a b

T
/

p
a

I

!
⌘ R

T
1A1R1. (3.10)

This identity is the single key to success of Cholesky factorization. Verify it.

Next, let’s work on the matrix A1. If A1 is SPD (we’ll need to prove this later), then

its submatrix , is also SPD by Lemma 4. Writing it in block form,

we can again use the same identity to factorise it as

A1 =

0

B@
1

a1 b1
T

b1 C1

1

CA =

and thus A = . We then work on the matrix A2 and carry on until

the matrix An = . Hence, we have

A =

where the product of upper triangular Ri is still upper triangular (Lemma 5). This is

the factorization required.
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It only remains to show that the matrix Ai in each stage is SPD. Consider the

expression for A1 in Eq. 3.10.

A1 =

R1 is clearly a full-rank square matrix, and so is R�1
1 . Thus, A1 is SPD by Lemma .

Similarly, all the subsequent Ai’s are all SPD.

In particular, if we apply the Cholesky factorization to a 2⇥ 2 SPD matrix, we should

find that a > 0 and c � b

2
/a > 0 (by Lemma 4). These are in fact the “assumptions”

needed in our ad-hoc factorization in Example 22. We have just shown that these

assumptions are in fact automatically satisfied by SPD matrices.

Let us now see the Cholesky factorization in action. The technique is to use the

identity (3.10) to construct R from the top down, layer by layer.

Example 28. Use identity (3.10) to find the Cholesky factorization of

 
2 2

2 5

!
.
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Example 29. Find the Cholesky factorization of A =

0

B@
4 �2 2

�2 2 �4

2 �4 11

1

CA.

Verify your answer using the MATLAB command chol(A).



3.3. CHOLESKY FACTORIZATION 71

Example 30. Find the Cholesky factorization of A =

0

B@
1 2 0

2 5 2

0 2 5

1

CA.
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Example 31. Use the Cholesky factorization to solve

0

B@
1 1 1

1 2 2

1 2 3

1

CAx =

0

B@
2

2

3

1

CA .
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Example 32. Apply Cholesky factorization to A =

0

B@
4 2 2

2 2 4

2 4 5

1

CA. Explain the result.
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3.3.5 Why do Cholesky?

Why is Cholesky factorization useful? Here are some reasons.

(a) The main advantage is that the Cholesky factorization is twice as fast as LU

factorization (since L is simply U

T ).

(b) SPD matrices are not as special and rare as you might think. They occur in many

areas of mathematics and physics, for example,

• covariance matrix in statistics

• metric tensor in di↵erential geometry

• moment-of-inertia matrix in mechanics

• sti↵ness matrix in PDE analysis

• conductance matrix of an electronic circuit

(c) SPD matrices can be easily constructed from any matrix (even non-square ones).

It’s not di�cult to show that if A is any full-rank matrix, then A

T
A is SPD.

Consider the system Ax = b when A is skinny, i.e. an overdetermined system -

with too many equations). There are no solutions to Ax = b, but AT
Ax = A

T
b

has a unique set of solutions called the solutions, which can

be used for fitting a line/curve through data points.

(d) The Cholesky algorithm is an e�cient way to test whether a symmetric matrix is

positive definite (without having to calculate eigenvalues). If A is not SPD, then

Cholesky factorization will fail. However, Example 32 showed that the Cholesky

algorithm still yields a nice factorization of the form

A =

This factorization can be used to solve Ax = b where A is symmetric but not

positive definite, and is still roughly twice the speed of LU factorization.
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3.4 Backslash revisited

I promised to return to MATLAB’s \ operator at the beginning of the Chapter, and here

it is. (This section is non-examinable.)

Like fzero, the backslash is a hybrid method,

When we issue the command A\b to solve Ax = b, MATLAB goes through the

following workflow.

• If A is already upper/lower triangular, launch back substitution.

• If A is permuted triangular, rearrange then back-substitute.

• If A is symmetric with positive diagonal entries, try Cholesky.

• If A is just symmetric, but not positive-definite, Cholesky will factorise A into

R

T
DR (as in Example 32), then back-substitute.

• If A is none of the above, do PA=LU, then back-substitute.

• If all of the above fail, no unique solution can be found.

I have given a simplified account above. The actual workflow is a bit more complicated.

See the help documentation on mldivide in MATLAB.

Compare the above workflow to what happens when we try to solve Ax = b using

the command inv(A)*b. MATLAB does the following:

• Solves Ac1 =

0

B@
1

0

0

1

CA, Ac2 =

0

B@
0

1

0

1

CA, Ac3 =

0

B@
0

0

1

1

CA as above.

• Constructs inv(A) = (c1 c2 c3).

• Calculates inv(A)*b.

This process has more back-substitutions and many more operations than the back-

slash workflow, and generally takes a few times longer. This explains the results in the

Graph assignment.

The main message of this Chapter is that you should never solve Ax = b by finding

A

�1. In real appications, matrix inverses are never needed explicitly.
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Nevertheless, there has been a quest to reduce the complexity of matrix inversion

from O(n3) by ‘pre-conditioning’ the matrices (repackaging and storing new variables

to minimize the number of operations). The current record is O(n2.373) (Coppersmith-

Winograd algorithm) but the steps involved are so unwieldy and the improvements are

only noticable for matrices so large that they remain, for now, mathematical curiosities.



4
Interpolation

Suppose we are given the following data points on the x� y plane:

(0,1), (2,2), (3,4).

Can we describe these data points with a single continuous function y = f(x)? Can

we estimate the value of, say, f(1)? This is a common task in real applied mathematics –

creating a continuous model that fits some given data.

You can see that the function f(x) is not unique. You could, for instance, connect the

points with straight lines, or any wiggly curve which “goes through”, or ,

those 3 points. The question is, therefore, what are the requirements for f(x)? e.g. is it

one single polynomial? of what degree? what happens at the end points? etc.

Here’s another reason why interpolation is important. Suppose we know that the

data points are obtained from a function y = f(x), but it is very complicated and each

function evaluation takes hours to compute. Can we find a simpler function (say, a

polynomial) which is a good approximation of f(x)?

In this Chapter, we will tackle these interpolation problems, using the simplest kind

of functions, i.e. , as building blocks. We will work mainly in 2D, but

occasionally in 3D too.

77
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Definition. A function y = P (x) is said to interpolate points (x1, y1), . . . (xn, yn) if

= (4.1)

for all i = 1 . . . n.

Data points are often (but not always) listed increasing x values, with no xi repeated

(why not?). The data points (xi, yi) are also known as (or knots, or control

points).

4.1 Lagrange polynomial

Example 1. Find a function, y = P (x), which interpolates between (x1, y1) and (x2, y2).

Express your answer in the form y1L1(x) + y2L2(x) (where Li are some functions).

A fancy name for drawing a straight line through some nodes is .

Example 2. Using the previous Example, write down a polynomial, y = P (x), which

interpolates three distinct nodes (x1, y1), (x2, y2), (x3, y3). What degree is this polynomial?

What we’ve found is called the form of the interpolating polynomial.
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Example 3. Find the Lagrange form of the interpolating polynomial given the nodes

(0, 1), (2, 2), (3, 4). Hence, express your answer in the form P (x) = ax

2 + bx+ c.

Sketch the curve and find P (1).

The Lagrange polynomial can be easily generalised to higher orders: Suppose we were

given 4 nodes (x1, y1) . . . (x4, y4). The Lagrange interpolating polynomial is

P (x) =

where L1(x) = L2(x) =

and so on. Note that P (x) is a polynomial of degree .

More generally, given n nodes, (xi, yi), i = 1 . . . n, we can write down the Lagrange

interpolating polynomial (degree ) as

P (x) = (4.2)

where Li(x) =

At the nodes, Li(x) satisfies the condition

Li(xj) = (4.3)

Is this polynomial unique as an interpolant? Yes (sort of). . . as we now prove.
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Theorem 4.1. Given distinct nodes (xi, yi), i = 1 . . . n, there exists a unique interpolating

polynomial of degree at most n� 1.

Proof. .

Corollary. The polynomial (4.2) is the unique polynomial of degree at most n � 1,

interpolating n nodes.

Amongst other things, the Theorem implies that there is only one line through 2 points.

Question. Is it possible to interpolate 3 points with a line?

Question. Is it possible to interpolate 2 points (x1, y1) and (x2, y2) using a parabola?

This explains the importance of the phrase “at most” in the uniqueness result.
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Example 4. (a) Find a polynomial of the lowest order which interpolates the points

(0, 2), (1, 1), (2, 0), (3,�1). Simplify your answer.

[Hint: It’s not supposed to be so painful.]

(b) Write down a polynomial of degree 10 interpolating the nodes.
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4.2 Divided di↵erences

The Lagrange form of the interpolating polynomial (4.2) is, as you have seen, quite

tedious to work out, so it’s not often used. Here is a more e�cient way to work out the

same polynomial due to Newton. First let’s rewrite the nodes as

(x1, f(x1)), (x2, f(x2)), . . . (xn, f(xn)). (4.4)

In other words, we assume that the y values come from some function y = f(x), which

could be a function which is so complicated that it’s better to work with a polynomial

approximation, P (x), which agrees with f(x) at the nodes.

Definition. The divided di↵erences, f [x1 x2 . . . xn] is defined as the coe�cient of

x

n�1 in the (unique) polynomial of order at most n � 1, interpolating the nodes

(x1, f(x1)), . . . (xn, f(xn)).

In other words, it’s just the coe�cient of the term with the highest power.

Example 5. Given the nodes (x1, y1) and (x2, y2), write down f [x1] and f [x1 x2].

This explains the name ‘divided di↵erences’.

Question. True or false? f [x1 x2] = f [x2 x1].

Example 6. In Example 3, we found the interpolating polynomial for the points (0,1),

(2,2), (3,4). Write down f [0 2 3].

Calculate f [0], f [2], f [3], f [0 2], f [2 3].

Let’s write down the above divided di↵erences as a little tableau

x1 f [x1]

f [x1 x2]

x2 f [x2] f [x1 x2 x3]

f [x2 x3]

x3 f [x3]
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The next Theorem tells us how to work out f [0 2 3] from the previous entries (i.e. a

recursive method).

Theorem 4.2. Given distinct nodes at x1, x2, . . . xn, the divided di↵erences obey the

recursive relation

f [x1 x2 . . . xn] =
f [x2 x3 . . . xn]� f [x1 x2 . . . xn�1]

xn � x1
.

Proof. Let q(x) and p(x) be the polynomials which interpolate the nodes {x1 . . . xn�1}

and {x2, . . . xn} respectively. Let these polynomials be of degree at most .

Consider the polynomial

r(x) =
p(x)(x� x1)� q(x)(x� xn)

xn � x1
,

of degree at most . We now show that r(x) interpolates all the nodes.



84 CHAPTER 4. INTERPOLATION

Question. Check that all the divided di↵erences in Example 6 obey the recurrence

relation we just proved.

Example 7. Find all the divided di↵erences given the nodes a) (0, 2), (1, 1), (2, 0),

b) (0, 2), (1, 1), (2, 0), (3,�1).

The previous Theorem explains how to recursively obtain all the divided di↵erences

in the tableau. In particular, we now show that the of the tableau

gives us the interpolating polynomial.

Theorem 4.3. Given distinct nodes at x1, x2, . . . xn, the interpolating polynomial can

be expressed as

P (x) =f [x1] + f [x1 x2](x� x1)+

f [x1 x2 x3](x� x1)(x� x2) . . .+ f [ ]
Y

Proof. Let P (x) interpolate all n nodes, and p(x) interpolate all except the last node.

Consider

Q(x) ⌘ P (x)� p(x).

Note thatQ(x) is a polynomial degree at most , with zeroes at x = .

Therefore

Q(x) =

where A is a constant. However, P (x) = p(x) + Q(x) interpolates all points, so the

coe�cient of the highest power (xn�1) is by definition. This

term must be part of Q(x) since p(x) is of degree only at most . Therefore,

A = , and thus we have
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P (x) = p(x) + (?)

Let’s work inductively with this relation to show that it takes the form as shown in the

Theorem. Suppose we have 2 nodes (n = 2). By definition, p(x) interpolates just the

first node, and so p(x) = . Thus, relation (?) gives

P2(x) =

where the subscript in P2(x) indicates that we have 2 nodes.

Suppose we add one more node (n = 3), we can take p(x) = (which

interpolates the first two nodes), and relation (?) becomes

P (x) =

Thus we can see that, inductively, the Theorem holds for any number of nodes. .

The previous Theorem tells us that once we’ve computed the tableau, the top diagonal

gives the coe�cients of the interpolating polynomial without having to mess around with

the Lagrange form.

Example 8. Using the tableau method, write down the interpolating polynomial given

the nodes (0, 2), (1, 1), (2, 0), (3,�1).

Example 9. Find the quadratic polynomial which interpolates the nodes (0, 1), (2, 2), (3, 4).
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The recursive nature of the algorithm means that more interpolating points can be

added without having to restart from the beginning (unlike the Lagrange form).

Example 10. Add a fourth node (1, 0) to the previous Example. Evaluate the new

interpolating polynomial, giving your answer in a nested form.

Computationally, it’s not helpful to expand the polynomial in powers of x (why?).

You could go further by nesting the polynomial completely (see Chapter 2), but this

partially nested form is su�cient for computational purposes.

Example 11 (Mock Exam 2015). a) Find the equation of a cubic polynomial, P (x),

which interpolates the points (�1, 0), (0, 1), (1, 0) and (3, 16).

b) A quartic polynomial, Q(x), interpolates the above data points, and also goes through

the point (2, 4).

Show that Q(x) can be expressed in the form

Q(x) = P (x)� Cx(x2
� 1)(x� 3),

where C is a constant which you should determine.
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I (MATLAB) Example 12. By modifying your code, nest.m, from Chapter 2, or

otherwise, write a MATLAB function, interDD(X,Y,x0), which evaluates the in-

terpolating polynomial, P (x), in Theorem 4.3 using nested multiplication, taking 3

arguments:

• X is an array of x coordinates of the nodes.

• Y is an array of y coordinates of the nodes.

• x0 is the value at which the polynomial is to be evaluated.

In your function, you may embed the function DD on the next page to help you

evaluate the divided di↵erences.

Submit the file interDD.m onto Canvas

By the way, you might like to see your interpolation results as a graph. For example,

to plot the polynomial in Example 9 with your interDD function, try the commands:

1 X = [0 2 3];

2 x0 = linspace(0,3); % 100 points spread evenly in [0,3]

3 Y = [1 2 4];

4 for n = 1:100

5 y0(n)= interDD(X,Y,x0(n));

6 end

7 plot(X,Y,’o’,x0,y0) % plot the data points with circles,

8 % then plot interpolant.

Alternatively, if you can make your interDD function accept an array x0 (and not

just a single number x0), then, plotting is easily done with

x0 = linspace(0,3); y0 = interDD(X,Y,x0);

plot(X,Y,’o’,x0,y0)
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Here’s the code for finding the divided-di↵erences. You can simply stick this code at

the bottom of your code interDD.m (in the same M-file, after you end your function).

This makes DD is a local function (meaning that only the function interDD can use it).

1 function A = DD(X,Y)

2 % output A = top diagonal of the divided-differences scheme

3 n=length(X);

4 for i=1:n

5 v(i,1)=Y(i) ; % The first column f[x_i]

6 end

7

8 for j=2:n % Fill in the next columns..

9 for i=1:n+1-j % ...from top to bottom

10 v(i,j)=(v(i+1,j-1)-v(i,j-1))/(X(i+j-1)-X(i)); % Divided differences

11 end

12 end

13

14 for k = 1:n

15 A(k)=v(1,k); % Output = the top diagonal

16 end
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4.3 Cubic splines

The word ‘spline’ derives from an East-Anglian dialect word meaning a thin strip of wood

or metal used by draftsmen to draw large curves (for example, in shipbuilding). Indeed,

many aspects of interpolation grow out of the industrial need to model and construct

curves using simple and e↵ective mathematical tools.

A spline is a simply a polynomial interpolating some given nodes,

satisfying some continuity conditions (more on this later). Here’s a simple example.

Example 13. Find the piecewise-linear spline which interpolates (1, 2), (2, 1), (4, 4), (5, 3).

Sketch the spline.

If we require smoothness (di↵erentiability) at the node, then clearly the linear spline

like the one above is not adequate. Quadratic splines would give a smooth curve, but

finding x for a given y value can be tricky.

splines are especially useful for interpolation because they strike a balance

between flexibility, visual appearance and complexity of the calculation.

Warning: In many books (in particular, those on computer graphics), splines are treated

parametrically, meaning that the cubic spline segments are a cubic function in t 2 [0, 1].

In this module, we deal with splines in Cartesian form. The two approaches are not

equivalent – and they generally produce di↵erent splines.
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In this section, let’s assume the nodes are given in increasing x (x1 < x2 < x3 . . .).

Definition. Given n nodes, (xi, yi) (i = 1 . . . n), a cubic spline is a piecewise-cubic curve,

comprising polynomials:

S1(x) = y1 + b1(x� x1) + c1(x� x1)
2 + d1(x� x1)

3 on [x1, x2]

Note that in this form, we automatically have the interpolation condition:

= (4.5)

To determine the spline coe�cients, let’s require the spline to be a twice-di↵erentiable

( ) function on the entire open interval (x1, xn).

Definition. A cubic spline interpolating nodes (xi, yi), (i = 1 . . . n), is a piecewise cubic

function which is on the interval (x1, xn).

Example 14. Find the cubic spline through (0, 3), (1,�2), (2, 1).

First, let’s write down the skeleton of the two cubic pieces.

Note that we have unknowns to solve.

First, the continuity ( ) condition at the tail end of each piece yields:
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The smoothness ( ) condition yields:

The continuity of the second derivative ( ) yields:

After 4 equations, we have run out of constraints. This is because we have not placed

any constraints on the derivatives at the endpoints.

There are several ways to impose the end-point conditions. Here’s one way.

Definition. A cubic spline is said to satisfy end-point conditions if the

second derivative vanishes at the endpoints, i.e.

and (4.6)

The resulting spline is called a natural spline. In our example, the natural end-point

conditions read:

All these conditions give 6 equations necessary to solve the 6 unknowns. Let’s try it

with the help of MATLAB.

I (MATLAB) Example 15. Write down the matrix equation satisfied by (b1, c1, d1, b2, c2, d2)T .

Use MATLAB to solve for these values (don’t use inv).
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Actually there is a more humanly-achievable way to deal with this huge system – it

can even be solved by hand. The idea is to break the problem down into two stages:

first by writing all the bi and di in terms of ci, and then solve a linear system for ci

instead (this is a much smaller n2 system, rather than (3n� 3)2). Thereafter, bi and di

can be recovered. The matrix equation in this method turns out to be much prettier

than the one we saw earlier (it is in fact tridiagonal). However, the detail this so-called

‘decoupling’ method is quite tedious, though not di�cult, so I’ll leave it for now. Just

be aware that a neat algorithm for finding spline coe�cients exists, and a brute force

method like what we did is not usually employed1.

The graph below (black solid line) shows the result of our interpolation.

You may be wondering if MATLAB comes with its own spline functionality. The

answer is yes: read the documentation on the commands spline (or, on a campus PC,

look up the command csape which requires the curve-fitting toolbox). But MATLAB’s

own spline (shown in dotted line in the figure below) seems to di↵er from ours.

0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

This is because MATLAB’s cubic splines do not obey the natural end-point conditions.

In general, MATLAB’s spline2 satisfies the following conditions at the first interior nodes:

S

000
1 (x2) = S

000
2 (x2) and (4.7)

In other words, condition holds at x2 and xn�1 (they coincide in the above example).

1
see §3.4 of Sauer for detail.

2
If only 3 nodes are given, spline returns a quadratic interpolant, as in the figure above.
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Example 16. Consider two cubic functions S1(x) = a + bx + cx

2 + dx

3 and S2(x) =

A+Bx+ Cx

2 +Dx

3. If their derivatives from 0th up to 3rd order all agree at x = x0,

show that S1(x) ⌘ S2(x) everywhere.

Therefore, if the MATLAB spline conditions (4.7) are satisfied, only a single cubic is

needed across the first 3 nodes (same for the last 3 nodes).

This is why conditions (4.7) are known as the conditions.

Example 17. Given the following cubic spline:

S(x) =

8
<

:
1 + 2x+ 3x2 + 4x3

x 2 [0, 1]

A+B(x� 1) + C(x� 1)2 + 4(x� 1)3 x 2 [1, 2]

(a) Determine the values of the constants A,B,C. Hence find the coordinates of the

nodes on which the spline interpolates.

(b) Show that the spline satisfies the not-a-knot conditions. Hence, verify that that

the two cubic pieces are, in fact, identical.
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Example 18. Find the constants A,B,C for the following natural spline.

S(x) =

8
<

:
16 + A(x+ 1) + 3(x+ 1)3 x 2 [�1, 0]

8 + Bx+ 9x2 + Cx

3
x 2 [0, 1]

I (MATLAB) Example 19. Look at data.worldbank.org/indicator/SP.POP.TOTL

Pick any country and fill in the table below.

Year Population

1985

1995

2005

2015

Use MATLAB to help you find the equation of the natural cubic spline which interpolates

the data. Plot the spline along with the data points. (Use more nodes if you wish.)

Create a PDF file which nicely presents your data, your graph and the equation of the

spline. Submit only the PDF on Canvas. Tips:

• Use linspace to create the x values for each piece of the spline.

• Show the data points on your spline using circles or crosses.

• Optional extra credit : explain any interesting trend in the graph (e.g. war, famine...)
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4.4 Bézier curves

We end this Chapter with an interpolation technique that is very popular in computer

design and graphics: curves. In fact, these curves are used to produce

the font you’re reading right now.

Unlike the previous interpolation techniques, Bézier curves are .

Let’s first revisit linear interpolation from a parametric perspective.

Starting with 2 points, A and B (in any dimension). To describe any point along AB,

we parametrize the line by a ‘time’ parameter t. It is convenient to set at A

and at B. Let a and b be the position vectors of A and B, then the line AB

can be described by the vector equation:

rAB(t) = (4.8)

This equation forms the basis of everything that follows. Make sure you’re ok with it.

Question. Let P be the point on AB for some given t. What is the ratio AP/AB?

Moving on from linear interpolation, one might now try to connect points with a

curve which is quadratic in t. Just as a linear interpolation requires 2 points, a quadratic

interpolation requires . We call these points (nodes or

knots are also used, but I’ll make this distinction for a reason which will become clear.)

Given 3 control points A, B, C with position vectors a, b, c, let’s first try to do

linear interpolation on AB and BC, using the same parameter t 2 [0, 1] for both lines.

rAB(t) = rBC(t) =

Now here is the neat idea behind Bézier curves: let’s now interpolate between these

two lines using the same parameter t. Let B(t) be the position of this point. Here is an

example of B(t) for t = 0, 0.25, 0.5, 0.75, and 1.
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The equation for B(t) can be found by linear interpolation between the two lines.

B(t) =

=

B(t) is called a Bézier curve with control points A, B and C. Note that:

• Given 3 control points, B(t) is quadratic in t.

• B(t) begins at A (t = ) and ends at C (t = )

• B(t) does not pass through B. Changing the coordinates of B will change the

shape of the curve. This is why we call them control points rather than nodes.

• Let P and Q be points with parameter t on AB and BC respectively. Let R be

the point with coordinates B(t). We have

AP

AB

= = =

Example 20. (a) Determine the equation of the Bézier curve B(t) with control points

at (0, 3), (2,�1) and (3, 0).

(b) Roughly sketch the Bézier curve.

(c) Hence find (x, y) coordinates on the curve at t = 1/2.

(d) Find the value of t at the turning point of the curve.
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Pierre

´

Etienne Bézier (1910-1999) French engineer. At 23,
he started working at Renault, where he remained for the next 42
years. He was a pioneer of computer-aided design and published
work on what we now call Bézier curves (and surfaces), based
on earlier work of fellow Frenchman Paul de Casteljau (who
incidentally worked for rival Citroën). The font you’re reading
now is rendered using cubic Bézier curves.

Example 21. Find the control points of the following Bézier curve:

x(t) = 2t2 + 2t� 1, y(t) = 4t� 3t2

If we have more control points, we can repeat the same sequence of linear interpolations

to construct a Bézier curve. The degree of the resulting polynomial in t will increase

with the number of control points. For instance, given 4 control points, the x and y

components of the resulting Bézier curve will be polynomials in t.

Question. Conjecture the form of a Bézier curve with 4 control points: a, b, c, d.

Let’s quickly prove our conjecture. We start in the same way with a linear interpolation

on each of the 3 segments. As before, a linear interpolation between the adjacent segments

produces two quadratic Bézier with control points a, b, c, and b, c, d. The equations of

these quadratic bits are:
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h1(t) =

h2(t) =

Then, we perform a linear interpolation between the two quadratic Béziers to obtain

B(t) =

Example 22 (Ordering matters!). Write down the parametric form of the Bézier curve

with control points given in the following order:

(a) (0, 1), (1, 3), (2, 2) and (3, 0).

(b) (0, 1), (2, 2), (1, 3) and (3, 0).

Calculate the coordinates of the point where t = 0.2 on each curve.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
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Note that by changing the ordering of the control points, the cubic Bézier curves can

exhibit points of inflections, loops and cusps. (Roughly sketch these situations below).

Example 23. A cubic Bézier curve has control points b0,b1,b2,b3. The curve can also

be written in the form

B(t) = ↵0 +↵1t+↵2t
2 +↵3t

3
.

Find the expression (in matrix form) for ↵i in terms of bi.

(More about this matrix in the tutorial.)
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One advantage of studying Bézier curves vectorially (as we have done) is that all our

results so far hold in any dimension. Here’s an example in 3D.

Example 24. Write down the equation of the 3D Bézier curve joining (2, 0, 0), (1, 0, 4)

and (0, 1, 1). Show that the curve does not intersect the plane z = 3.

0.5

1

0

1.5

2

2.5

1
10.80.60.42 0.20

I (MATLAB) Example 25. Let p = [x1, y1, x2, y2, x3, y3, x4, y4] be the list of 2D

coordinates of four control points (xi, yi). A MATLAB code (written by a student)

for plotting a Bézier curve given the array p is given below.

1 function bezplot(p)

2 t = linspace(0,1);

3 X=(1-t).^3*p(1) +3*t.*(1-t).^2*p(3) +3*t.^2.*(1-t)*p(5) +t.^3*p(7);

4 Y=(1-t).^3*p(2) +3*t.*(1-t).^2*p(4) +3*t.^2.*(1-t)*p(6) +t.^3*p(8) ;

5 plot(X,Y)

6 end
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(a) Test the code using Example 22 to make sure it works.

Can the code be made more e�cient?

(b) Modify the code so that it now accepts an N ⇥ 8 matrix as the input (p). Each

of the N row of p represents a single Bézier curve. The output should be a

single plot containing all N Bézier curves.

Test your code on the following input data files:

bez1.txt

bez2.txt

bez3.txt

on Canvas. If it works, you should see some nice images.

On Canvas, submit your modified, annotated code that showed you the images.

Tip: Use hold on and hold off to plot multiple graphs.



5
Numerical Calculus

It should not surprise you that di↵erentiation by product rule and integration by parts are

quite beyond the limit of poor old IEEE binary arithmetic. Computers do not understand

calculus. In this final chapter, we will see how to tackle di↵erentiation and integration

problems in purely numerical terms, involving basic arithmetic operations (+,�,⇥,÷).

I must emphasise that we are not going to do symbolic calculus. For example, we are

not interested in the problems

If f(x) = x

2 + e

x, find f

0(x) OR Find

Z
sin x dx,

which are symbolic in nature, and so must be solved by specialised packages that have

been taught the rules of calculus (e.g. MuPad). Instead, we are interested in problems

that require numerical answers, such as

If f(x) = x

2 + e

x, find f

0(2) OR Find

Z
⇡

0

sin x dx,

which can be solved with simple binary arithmetic on a computer.

Things to recall before we proceed:

103
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• Taylor’s Theorem for expanding a function f(x+ h) as a series in h (h > 0).

Full form:

OR, if we expand up to the term in h

n�1, we can include the ‘error’ term, also

called the form of the remainder:

where ⇠ 2 . The above equation requires f (n�1) to be continuous on

the interval [x, x+ h] (i.e. f is a function on this interval).

• Intermediate-Value Theorem. If f is continuous on [a, b], then, for any given number

y between f(a) and f(b),

• Floating-Point Rep Theorem (Theorem 1.1) The fractional error in representing a

real number x as a float fl(x) satisfies:

5.1 Numerical derivative

The key idea is to approximate the derivative at x by the gradient of the straight line

drawn ‘near’ x. This idea is hardly new - recall the limit definition of the derivative:

f

0(x) =

Here, we want to be more precise about the expression inside the limit. How ‘near’

should we go to x? and how accurate would it be? Let’s now investigate.

Suppose that f is a C

2 function on R. Let’s write down the Taylor expansion of

f(x+ h) with the error term of order h2.

=) f

0(x) = (5.1)
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So we see that the error of this approximation is directly proportional to the size of

h. For example, cutting h in half will also half the error (theoretically at least. . . ).

Some terminology:

• h is called the .

• We say that the error in formula (5.1) is O( ).

• Another way to state the previous point is to say that the formula is first-order

approximation. Note: an order-n approximation has an error term.

• The formula (5.1) is known as the

formula for calculating the derivative. Can you see why?

Question. Write down the 2-point backward -di↵erence formula for f 0(x).

In real applications of (5.1), it’s not possible to know the exact size of the error (we

don’t even know f

0(x) exactly, let alone f

00(x)). However, it’s more useful to note how

the error scales with h. This will allow us to minimize the error later.

Example 1. Consider f(x) = 1/x.

(a) Using the forward-di↵erence formula with h = 0.1, estimate f

0(2) to 4 dec. pl.

(b) Find the actual answer and calculate the absolute the error E.

(c) Verify that the error E is within the expected bound from Taylor’s theorem.
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The next example shows what typically happens in real applications: there is little or

no information about the exact form of f , and so we can only get a rough estimate on

the size of the error.

Example 2. Estimate the derivatives below using the forward-di↵erence formula with

h = 0.1. Put ⇤ in entries that cannot be calculated.

x f(x) f

0(x) f

00(x)

�0.1 1.1052

0 1.0000

0.1 0.9048

0.2 0.8187

Note that the forward di↵erence formula is an asymmetric scheme, which means that

the round-o↵ error can accumulate in one direction, becoming worse for higher-order

derivatives. You might like to know that actually f(x) = e

�x in the above example. In

practice h should be much smaller (we will see how small later).

A redeeming feature of the two-point formula is that it is faster than other methods

- only 2 evaluations of f(x) are required per derivative. But if we can a↵ord more

evaluations, it’s better to use the following symmetric estimate for f 0(x).

Theorem 5.1. If f is a C

3 function on R, then f

0(x) can be estimated to second order

using the symmetric-di↵erence formula

f

0(x) =

where ⇠ 2 (x� h, x+ h).

Proof. Let’s write down Taylor’s expansions, with error term O(h3),

f(x+ h) =

(5.2)

f(x� h) =

(5.3)

where ⇠1, ⇠2 2 I = (x� h, x+ h). Subtracting gives
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f

0(x) =
f(x+ h)� f(x� h)

2h
� h

2

6


f

000(⇠1) + f

000(⇠2)

2

�
(5.4)

Let x
m

and x

M

be the values of x where f

000 attains the minimum and maximum on I.

The final terms in the square brackets therefore satisfy the bound

 f

000(⇠1) + f

000(⇠2)

2


Since f is a C3 function on R, f 000 is continuous on I. By the Intermediate Value Theorem,

Example 3. Consider f(x) = 1/x. Use the symmetric-di↵erence formula to estimate

f

0(2), using step size h = 0.1, and compare the absolute error with that in Example 1.

Example 4. (Homework) Follow the derivation of Theorem 5.1 (but keep more terms)

to obtain a symmetric-di↵erence formula for f 00(x). You should find that this is an O(h2)

formula.
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I (MATLAB) Example 5. Choose any interesting twice-di↵erentiable function f(x)

on some domain. Write an M-file which, when run, produces a beautiful plot of

f(x), f 0(x) and f

00(x).

Your derivatives must be calculated using the symmetric-di↵erence formulae (found

in Theorem 5.1 and Example 4). Experiment with the step size h and use a value

which you think gives a good estimate of the derivatives.

Plot everything on the same set of axes. Submit only a single M-file onto Canvas.

Here’s an example of what you should see when the M-file is run. I chose f(x) =
sin x

x

.

0 �/2 � 3�/2 2�
-0.5

0

0.5

1
f(x)=sin(x)/x
1st derivative
2nd derivative

Tips:

• Use di↵erent line types (e.g. dotted, dashed) or thicknesses to ensure that the

3 curves are distinguishable, even when printed in black and white.

• Some complicated plotting commands can be obtained by first editing the graph

manually, then click on File ⌧ Generate Code. . .

Warning: You must not di↵erentiate anything by hand, nor should you need the

symbolic functionality of MATLAB/MuPad. You should not need to type the

command syms x.



5.2. MINIMIZING THE ERROR 109

5.2 Minimizing the error

Let’s go back to the forward-di↵erence approximation

f

0(x) ⇡ (5.5)

Theoretically, this approximation becomes more accurate as h becomes smaller. But

surprisingly this is not true in practice, as we now explore.

Let’s think about the sources of error associated with this formula. First of all, there

is an error which comes from chopping o↵ the Taylor series after a few terms. We have

shown in Eq. 5.1 that this error has magnitude

E

T

= (5.6)

This is called the .

However, the forward-di↵erence approximation also involves another kind of error com-

ing from subtracting nearly equal numbers, leading to .

You can imagine that this is worse when h becomes smaller and smaller. Let’s estimate

this second source of error (called ).

Let the "1 and "2 be the error in the floating-point representation of f(x) and f(x+h)

respectively, meaning that

"1 ⌘ fl(f(x))� f(x)

⌘

When evaluating the approximation (5.5) on a computer, we find

f

0(x) =

=

This means that the rounding error, E
R

, is given by

E

R

= (5.7)
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(we are only interested in the magnitude of errors). Now let’s try to estimate E

R

. First,

recall the floating-point representation theorem. The floating point rep of a quantity Q

satisfies the error bound



This implies that

|"1| 



A rough estimate for E
R

can be obtained via the triangle inequality.

E

R



where we used the approximation f(x) ⇡ f(x+ h), for small h.

Therefore, the total error (truncation+rounding) is bounded above by

E(h) = E

T

+maxE
R

⇡ (5.8)

Regarding E as a function of h, we see that it’s just a combination of a linear piece

coming from E

T

(which dominates at large h) and a h

�1 piece coming from E

R

, which

dominates when h is small. This suggests that E has a minimum point.

Example 6. Estimate the value of h which minimises E(h).
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Since ⇠ 2 (x, x+ h), for small h, we can make the approximation f

00(⇠) ⇡ .

In conclusion, we see that the error in the forward-di↵erence approximation is minimized

if h is chosen such that

h ⇡ (5.9)

Notice that you need di↵erent optimal h depending on where you are di↵erentiating.

Example 7. If f(x) = kx

n (n > 0), estimate the optimal h for di↵erentiating f(x) using

the forward-di↵erence scheme.

The optimal h formula (5.9) looks great, but it is full of unknown quantities. Remember

that we don’t even know how to di↵erentiate f , let alone finding f 00. For practical purposes,

we could assume that f(x) and f

00(x) are roughly the same order of magnitude (for

example, this works for f(x) = sin x or , but not for x1000). If this is the case

then the optimal h is roughly

h ⇠ (5.10)

Here we follow the folkloric convention that ⇡ means a reasonable approximation (i.e.

estimate can be used with good confidence), whereas ⇠ means a rough approximation

(order-of-magnitude estimate only; hit-or-miss for some unusual functions).

So how big is this optimal h? well,

("mach)
1/2 =

You will find that decreasing h beyond this number will result in an increasing error in

the approximation.

Using this optimal h what is the minimum error achievable? Let’s find out.
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Example 8. Using the rough-approximation symbol ⇠ in your working, estimate that

the minimum error Emin achievable using the forward-di↵erence formula. Express your

answer in terms of "mach.

Make a rough sketch of the function E(h), showing its turning point.

The previous Example shows that, in general, the forward-di↵erence approximation

produces derivatives that are accurate to no more than about 8 significant figures.

We can follow exactly the same procedure to arrive at the optimal h for the symmetric-

di↵erence scheme. This is so important that we will state it as a theorem.

Theorem 5.2. The error in the symmetric-di↵erence formula for f

0(x) is minimized

when h is chosen so that

h ⇠ ("mach)
1/3

.

Proof: Work on a separate sheet.

Example 9. Estimate the minimum error achievable using the symmetric-di↵erence

formula, giving your answer in terms of "mach.
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The main results in this section can be summarised in the following graphs.

I (MATLAB) Example 10. Choose a function f and a value c at which f is di↵er-

entiable (i.e. |f 0(c)| < 1). Compare the actual derivative with f

0(c) estimated using

the symmetric-di↵erence formula. Do this for a range of h.

Use MATLAB to produces a graph of the absolute error,

E(h) ⌘ |actual � estimate|,

as a function of h. The graph should show that E has a minimum at some optimal h.

Discuss the main features of your graph, and explain whether they are consistent

with the theory studied in this section.

Upload a single PDF of the graph along with your discussion (in the same PDF)

onto Canvas. Here are some tips.

• To graphically display a function which fluctuates across many orders of mag-

nitude, it’s clearer to plot it on log scale. For example, if y = x

2. Plotting

Y = ln y against X = ln x will result in a straight line Y = 2X. Read the

documentation on loglog.

• Read about logspace (the partner of linspace). This will allow you to plot

the graph over a large range of h.
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I PRACTICAL TRICKS

Here are some industry-standard tricks and

‘rules of thumb’ when deploying numerical

derivatives. (The material on this page is non-

examinable, but the formulae and tricks dis-

cussed here are useful for real applications).

Firstly, if we approximate f(x) as a poly-

nomial of order n, then, the optimal h for the

forward-di↵erence formula is

h ⇠ "
1/2
mach|x|.

(see Example 7). Clearly this estimate is not

useful for calculating the derivative at x = 0

(why?), so we often use a more practical ex-

pression

h = max{x, 1} ("mach)
1/2 (5.11)

instead1. For example, to di↵erentiate a func-

tion at some value of x, your code might look

like this.

h = sqrt(eps)*max([x,1]);

df = (f(x+h)-f(x))/h;

Seems reasonable enough, but we shouldn’t

overlook the fact that there might also be

round-o↵ error from the expression x+h, since,

generally fl(x+ h) 6= x+ h.

Let’s suppose this round-o↵ error is ", i.e.

fl(x+ h) = x+ h+ ".

This means that the forward-di↵erence ratio in

the code is really

df =
f(x+ h+ ")� f(x)

h
. (5.12)

As you can see, this formula is a little forward-

biased in the numerator. The result of this

calculation is doomed to be inaccurate since it

doesn’t form a forward-di↵erence ratio consis-

tently for di↵erent x.

To avoid this error, we can perform the

following trick.

h = sqrt(eps)*max([x,1]);

xph = x+h;

H = xph -x;

df = (f(xph)-f(x))/H;

Now we see that

fl(xph) = x+ h+ ",

f l(H) = h+ ",

=) df =
f(x+H)� f(x)

H
. (5.13)

This expression is an exact forward-

di↵erence ratio at all x. Even though H isn’t

exactly h, (5.13) is still a superior approxima-

tion to (5.12) because we have eliminated one

source of round-o↵ error.

A similar trick can be performed for the

symmetric-di↵erence scheme to give you an

improved accuracy.

1replace the square root by cube root for the symmetric-di↵erence scheme.
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5.3 Richardson extrapolation

You may find it disappointing that none of the derivative formulae in the previous sections

has accuracy comparable to "mach. However, in this section, we will see how simple

formulae like the forward and symmetric di↵erence can be turbo-boosted to arbitrarily

high accuracies, via a process called Richardson extrapolation.

First, let’s see how to turbo-boost the forward-di↵erence formula. As before, we start

by considering the Taylor series for f(x).

where we let F (h) ⌘ [f(x+ h)� f(x]/h (the forward-di↵erence estimate).

Now we use a simple trick to eliminate the next order error term (O(h)). The trick is

to replace the step size h by h/2 (this is the motto of this section). This gives:

By using the original formula to eliminate the O(h) term, we easily obtain an O(h2)

(much improved) approximation.

More explicitly, this improved forward-di↵erence formula for the derivative reads:

(5.14)
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The payback for increasing the accuracy is the need to evaluate the function at more

points. In addition to the function values at x and x+ h, we also need another value at

the point halfway in between.

This simple idea of reducing the error of an approximation by using more points in

between is called . Lewis Fry Richardson (1881-

1953) was an English mathematician and physicist whose studies on the coastline of

Britain led to the discovery of fractals.

If desired, we can repeat the extrapolation trick on the new O(h2) formula to obtain

an O( ) formula, and so on. Often it won’t be necessary to deal with the numerical

constants in our working explicitly, as in the next example below.

Example 11. Use Richardson extrapolation on Eq. (5.14) to derive the formula

f

0(x) =
Cf(x) + 32f(x+ h

4 )� 12f(x+ h

2 ) + f(x+ h)

3h
+O(h3)

where C is a constant which you should determine.
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Note that there is no need to know the coe�cient of the leading error term explicitly.

Only the order is important.

Richardson extrapolation can, in fact, be applied to any quantity involving the

step-size h (not just derivatives). In fact we will use it later for improving integration

formulae.

Example 12. Suppose that a given quantity Q can be expressed as a series in h, and

Q = F (h) +O(hn).

Derive the Richardson-extrapolated formula for Q.

Now let’s try Richardson extrapolation on the symmetric-di↵erence formula for f 0(x).

Surprisingly, each extrapolation will improve the order by not just one, but two orders

of h ! To see this, it’s worth re-deriving the formula here, without using the remainder

term.

We see that the error terms in this approximation are all in even powers of h. Thus,

a single extrapolation will eliminate the h

2 term, leaving us with an O( ) formula.
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Example 13. Use Richardson extrapolation to obtain the following symmetric-di↵erence

formula

f

0(x) =
f(x� h)� 8f(x� h/2) + 8f(x+ h/2)� f(x+ h)

6h
+O(h4) (5.15)

(No need to memorise any extrapolated formulae, but you should know how to obtain them.)
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5.4 Numerical integration – prelude

Theorem ( Theorem for Integrals). Let f and g be continuous

on [a, b], and either g(x) � 0 or g(x)  0 on [a, b] (i.e. g(x) does not change sign) , then

9⇠ 2 (a, b) such that Z
b

a

f(x)g(x) dx =

Proof. Since f is continuous, f must attain a maximum and a minimum on [a, b], say, at

x = x

M

and x = x

m

respectively (this is due to the theorem).

Thus,


Z

b

a

f(x)g(x) dx 

where I ⌘ R
b

a

g(x) dx. Let’s assume that g(x) � 0. This implies that .

• If I > 0, we can divide through by I and still preserve the inequality.

Thus, 9⇠ 2 (a, b) such that

=

This is a consequence of the Theorem. Multiplying

both sides by I gives the required result.

• If I = 0 then the theorem holds for any ⇠ since the RHS is zero (in fact it can be

shown that g(x) ⌘ 0 in [a, b] – an exercise in analysis).

To deal with the case g(x)  0, simply replace g(x) by in the proof.

Question. Interpret the above theorem graphically for the case g(x) ⌘ 1.

Numerical integration involves problems that have numerical answers, e.g.
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The key idea in numerical integration is to first approximate f(x) as a

(why?) which matches f(x) at x = a and b, and possibly more nodes in between (the

more nodes we have, the more accurate the answer will be). Thus, you can see that

numerical integration relies on the technique of .

What’s the error that results from this polynomial approximation? Here it is.

Theorem 5.3. Let f(x) be a C

n function on R, and let P (x) be a polynomial such that

P (x) = f(x) at nodes x1, x2 . . . xn

. Then,

f(x) =

with the error given by

E(x) =
f

(n)(c)

n!
(x� x1)(x� x2) . . . (x� x

n

),

where c lies between the minimum and maximum of the numbers x, x1, x2 . . . , xn

.

We will omit the proof in this course. Consult Sauer page 155 if you are interested.

Note that c depends on x (why?). To remind ourselves, we could write .

Even though it looks complicated, the above theorem simply says that:

f(x) = Approximation + Error.

Example 14. Write down a polynomial P (x) which interpolates f(x) at x = x0 and

x = x1. Write down what Theorem 5.3 says in this case.

What happens when f(x) is a straight line?

[Note: recall the shorthand y0 ⌘ f(x0), y1 ⌘ f(x1).]



5.5. TRAPEZIUM RULE 121

5.5 Trapezium Rule

The calculation of the actual Trapezium-Rule approximation will be the same as what

you’ve done in school, but here we will develop a deeper understanding of the error.

Consider the integral Z
x1

x0

f(x) dx,

where f is C2 function on [x0, x1]. Let’s try to do this integral with just one trapezoidal

strip from x = x0 to x = x1.

First, write down f(x) as a polynomial interpolating two end-nodes (x0, y0) and

(x1, y1), plus the error term. Example 14 showed how these terms look like. Now let’s

try integrating f(x).

Example 15. Evaluate

Z
x1

x0

P (x) dx..

Note: it helps to express the answer in terms of the width of the strip, h ⌘ .

Example 16. Evaluate

Z
x1

x0

E(x) dx. (Strategize before integrating!)
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We have just proved the following theorem.

Theorem 5.4 (Basic Trapezium Rule). If f is C2 on [x0, x1], then

Z
x1

x0

f(x) dx = (5.16)

Let’s generalise this the basic (1 strip) version to the composite version (n strips).

Theorem 5.5 (Composite Trapezium Rule). Let a = x0 < x1 < x2 . . . < x

n

= b, where

the nodes x
i

are evenly spaced, with h = (b� a)/n. If f is C2 on [a, b], then

Z
xn

x0

f(x) dx =
h

2

"
y0 + y

n

+ 2
n�1X

i=1

y

i

#
� (b� a)h2

12
f

00(⇠), for some ⇠ 2 (a, b)

Proof: Applying the Basic Rule in the intervals [x0, x1], [x1, x2] . . . [xn�1, xn

] gives

Z
x1

x0

f(x) dx =

=

...

=

Adding these equations gives

Z
xn

x0

f(x) dx = (5.17)

Since f is C2 on [a, b], f 00 is continuous. Let f 00 attain the minimum and maximum

values at x
m

and x

M

respectively. . .
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Corollary. The Trapezium Rule is an order- approximation.

Also note that the error vanishes when f is a linear function. This is consistent with

the geometric picture – area under a straight line is exactly a trapezium.

Example 17. Evaluate Z 2

1

ln x dx

to 4 S.F. using the Trapezium Rule with 4 strips. Give an upper and a lower bound on

the error in this evaluation.

Is this bound consistent with the actual error?
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Example 18 (Tutorial discussion).

(a) Evaluate Z
⇡

0

sin2
x dx (?)

using the Trapezium Rule with 5 strips. Give your answer to 4 S.F.

(b) Without performing the actual integral, give an upper and a lower bound on

the error in your answer in part (a).

(c) How many strips are needed so that the Trapezium-Rule estimate of the integral

(?) is guaranteed to be accurate to 6 decimal places.
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5.6 Simpson’s Rule

In Simpson’s Rule2, the interpolation in each strip is done using a

drawn in the interval [x0, x2] (where x2 � x1 = x1 � x0 ⌘ ). Each strip has width

. Recall from Chapter 4 that the lowest-order polynomial P (x) which interpolates

f(x) at x0, x1 and x2 can be written in Lagrange form as:

Example 19. Show that

Z
x2

x0

P (x) dx =
h

3
[y0 + y2 + 4y1].

Proof. Exercise

Using a similar technique as in the Trapezium Rule (but surprisingly much more

di�cult), we can derive the integrated error term. I’ll state the result here as a Theorem.

Theorem 5.6 (Basic Simpson’s Rule). If f is C4 on (x0, x2), then

Z
x2

x0

f(x) dx =

where ⇠ 2 (x0, x2).

You can see that this is a much “better” formula compared to the Basic Trapezium

Rule (why?). Now let’s upgrade the Basic Rule into a composite one.

Theorem 5.7 (Composite Simpson’s Rule). Let a = x0 < x1 < x2 . . . < x2n = b, where

the nodes x
i

are evenly spaced, with h = . We have:

Z
b

a

f(x) dx =
h

3

"
y0 + y2n + 4

nX

i=1

y2i�1 + 2
n�1X

i=1

y2i

#
�

where ⇠ 2 (a, b).

CAUTION: Although the Simpson’s formula partitions the interval [a, b] using 2n+ 1

values of x, we say that only “n strips” were used. Be careful!

2Thomas Simpson (1710-1761). English self-taught mathematician. His ‘rule’ was already known to
Newton (and a number of previous mathematicians), as Simpson himself acknowledged.
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Proof: As in the Trapezium Rule, we apply the Basic version in many strips and add

them all up.
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Corollary. The Simpson’s Rule is an order- approximation.

Example 20. A function f has the values shown below.

x 1 1.5 2 2.5 3

f(x) 1 2
3

1
2

2
5

1
3

Use Simpson’s Rule to estimate the integral

Z 3

1

f(x) dx using i) 1 strip, ii) 2 strips.

Example 21. Use Simpson’s Rule with 1 strip to evaluate

Z 4

0

(2x� 1)3 dx.

Calculate the exact answer and comment on the result.
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Example 22. Evaluate Z 2

1

ln x dx

to 4 S.F. using the Simpson’s Rule with 2 strips. Give an upper and a lower bound on

the error in this evaluation. Compare the result with Example 17.

Is this bound consistent with the actual error?

Example 23. Estimate the number of strips, n, needed in the above Example in order

to achieve an answer that is accurate to p decimal places. Give an upper and a lower

bound for n when p = 5 and p = 10.
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5.7 Romberg integration

We end this Chapter with the very popular and powerful Romberg3 integration. The idea

is to start with the usual Trapezium Rule, and improve on it iteratively via Richardson

extrapolation, to achieve an arbitrarily high accuracy.

Previously, we have shown that Trapezium Rule is an order- approximation (we

always refer to the Composite Rule). We expect that Richardson extrapolation should

eliminate the O(h2) error term, and give us an order- approximation.

But the good news is, actually, the next-order error is order four ! It turns out that the

error in the Trapezium Rule is actually a series in powers of h, so eliminating

the h2 terms leaves us with the h4 term (just like the symmetric-di↵erence formula (5.15)).

Let’s state this very important fact as a theorem.

Theorem 5.8. The error in the Composite Trapezium Rule can be written as a series

in even powers of h Z
b

a

f(x) dx =

for some constants K
i

’s.

This is a surprisingly deep fact which isn’t straightforward to prove, so I won’t go

over the proof here4. The exact values of the constants don’t really matter to us here5.

Only the powers of h (which determines the order of the approximation) are important.

Romberg integration starts with the calculation of Trapezium-Rule estimates.

Definition. R
N1 denotes the Trapezium-Rule estimate of

Z
b

a

f(x) dx using 2N�1 strips.

For example, R11 uses one strip with width h = b � a. R21 uses 2 strips width

. R31 uses strips, width etc. (doubling each time).

The goal of Romberg integration is to obtain the Romberg estimate R

jk

for arbitrary

j and k. Every R

jk

is a possible answer to the integral, but di↵ering in accuracy. The

index increases with the number of ‘strips’, and increases with the ‘order’ of

approximation. To get to higher orders, we use Richardson extrapolation. . .

3
Werner Romberg (1909-2003), German mathematician who escaped Nazi Germany and settled in

Norway. His integration method was based on previous work by Maclaurin and Huygens.
4see Cheney and Kincaid, page 220.
5The Ki’s are related to the famous Bernoulli’s numbers.
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Example 24. R22 denotes the estimate of I =

Z
b

a

f(x) dx obtained by Richardson

extrapolation of the order-2 estimates, R11 and R21..

(a) Derive the expression for R22. What is the order of this estimate?

(b) Deduce a similar formula for R32 and R

N2. What order are these estimates?

Remember: When the index j in R

jk

increases by 1, the number of strips is .

When the index k increases by 1, the order of the resulting formula increases by .

Example 25. Derive R33 in terms of R
j2. What is the order of this approximation?
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Question. Write down a general recursive formula for the Romberg estimates R
jk

.

(5.18)

The Romberg estimates are traditionally presented in a little tableau.

As we go down each column, the number of strips is doubled in each step. As we go

from one column to the next, the accuracy is increased from O(hk) to . Thus,

given a finite tableau with ↵ rows and � columns, the best estimate is .

In Romberg integration, always start o↵ constructing the tableau with Trapezium

Rule, then use (5.18) to get to higher orders. The formula will be provided in the exam.

Example 26. Construct the Romberg tableau up to R33 for

Z 3

1

1

x

dx.

Leave all your answers as fractions.. [Hint: For R

j2, check with Example 20.]
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Example 27. Let I(h) =

Z
b

a

f(x) dx. Write down the Trapezium-Rule estimate using

n strips, each of width 2h, with the partition a = x0 < x2 < . . . < x2n = b.

Apply Richardson extrapolation to the resulting formula and comment on the result.
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The diagram below summarises everything about Romberg integration and the significance

of each entry.

Here is a geometric interpretation for R33. The Romberg formula obtained can

be shown to be equivalent to an approximation using an interpolating polynomial

through points (so clearly it is a polynomial). It is an order-

estimate, known historically as Boole’s Rule. George Boole (1815-1864) was an English

mathematician who invented the symbolic logic which we now call Boolean algebra.
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5.8 Epilogue

Numerical integration occupies a broad and profound part of the numerical-analysis

canon – much more so than these lecture notes might suggest. By extending the basic

materials presented here, it is possible to deal with the following problems numerically.

Integrals with problematic end-points:

Z 1

0

1p
x

dx,

Improper integrals:

Z 1

0

e

�x

2
dx,

Multi-dimensional integrals:

ZZZ

R3

e

�x

2�y

2�z

2
dx dy dz.

Adaptive integration (used in MATLAB’s integral):

Z 10

0

sin(x2) dx.

If numerical analysis interests continues to interest you, I recommend choosing 3rd-

year Numerical Analysis (32327), for which our module is not a pre-requisite, but will

certainly give you a head start! The third-year course will be purely theoretical (no

MATLAB!) and overlaps with roughly 10-20% of this course.

I hope that, at the very least, this course has given you the following:

• New insights into how computers work, and how various mathematical tasks can

be optimized for accuracy and speed when implemented as codes.

• An appreciation that to understand computers, we need a deep understanding of a

wide range of mathematical topics, from analysis to linear algebra.

• A vastly improved programming skill.
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